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Protein hourglass: Exact first passage time distributions for protein thresholds
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Protein thresholds have been shown to act as an ancient timekeeping device, such as in the time to lysis of
Escherichia coli infected with bacteriophage λ. The time taken for protein levels to reach a particular threshold
for the first time is defined as the first passage time (FPT) of the protein synthesis system, which is a stochastic
quantity. The first few moments of the distribution of first passage times were known earlier, but an analytical
expression for the full distribution was not available. In this work, we derive an analytical expression for the first
passage times for a long-lived protein. This expression allows us to calculate the full distribution not only for
cases of no self-regulation, but also for both positive and negative self-regulation of the threshold protein. We
show that the shape of the distribution matches previous experimental data on λ-phage lysis time distributions.
We also provide analytical expressions for the FPT distribution with non-zero degradation in Laplace space.
Furthermore, we study the noise in the precision of the first passage times described by coefficient of variation
(CV) of the distribution as a function of the protein threshold value. We show that under conditions of positive
self-regulation, the CV declines monotonically with increasing protein threshold, while under conditions of
linear negative self-regulation, there is an optimal protein threshold that minimizes the noise in the first passage
times.
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I. INTRODUCTION

Thresholds in protein concentrations are ubiquitous in cell
biology and are thought to be one of the main methods by
which cells control the timings of events. Imposing a threshold
before a biological process can be activated is believed to
protect the process from noise-driven spurious activation, but
as discussed below, it may also serve as a timing device by
maintaining a certain time interval between events. Cells do
have other timing devices, most significant of which are cir-
cadian and ultradian rhythms. But thresholds offer one of the
simplest timing devices possible, like the sand-filled hourglass
of yesteryears, which could be why they are ubiquitous in
cellular processes. A good example of thresholds determin-
ing timing is provided by the passage of cells through the
restriction point (R) during the cell cycle. It has been shown
that passage through R in fibroblasts is governed by a rather
precise threshold of the activity of the kinase, Cdk, and that
a live cell Cdk sensor accurately predicts passage through R
for 96% of cells [1]. Just as in cell reproduction, in cell death
too, the timing and probability of mitochondrial outer mem-
brane permeabilization, the irreversible step committing the
cell to apoptosis after an event like DNA damage, depends on
proapoptotic signals crossing a threshold [2–4]. However, the
most well studied question in cell biology where thresholds
are believed to play a major role in determining timing is the
replication of λ phage.
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After λ phage infects an Escherichia coli bacterium, it can
have one of two possible life cycles, either the lytic or the
lysogenic path. The molecular basis of this decision making
has been critical to the development of our understanding of
stochastic gene regulation over the last half-century [5–15].
The lysogenic phage incorporates their DNA into the bacterial
chromosome, which sits there silently until a stress signal
indicating host distress activates the genes and they enter the
lytic cycle. In the lytic pathway, the virus multiplies in its host
for a programed time period, and then lyses the host, which
then bursts, releasing several virions. The majority of infected
bacteria will take the lytic route, and most remarkably, the
timing of lysis after initial phage infection is tightly controlled
[16] with a variation of only about 5% of the mean, which
is a remarkable level of precision for such a complicated
system, especially when the burst size is found to vary sig-
nificantly more [16–18]. The timing system of λ phage is
controlled by the accumulation of a protein, holin [19,20],
that permeabilizes the membrane after it accumulates to a
critical level. The tight regulation of lysis time is believed to
have an evolutionary basis and was a prediction from optimal
foraging theory [16]. Significantly there does not appear to be
any additional genetic regulation that determines the timing
of lysis. In two seminal papers [18,21], Singh, Dennehy, and
colleagues explored the idea that the timing of lysis is con-
trolled by the first passage time for the holin protein to reach
a threshold. For any stochastic system, the first passage time
is a random variable that denotes the first time some event
occurred [22]. Examples of such events may be like a passive
or active particle reaching a boundary [23,24], a protein bind-
ing to a specific patch on DNA [25], a moving kinetochore
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FIG. 1. Model depicting a gene transcribing mRNAs, which are
further translated into proteins. The transcription rate is assumed to
be regulated by the protein level, creating a feedback loop (denoted
by the dashed line).

being captured by microtubules [26], or as in this case protein
levels reaching a predetermined threshold. The papers [18,21]
showed that a model based on the statistics of first passage
times to reach a critical protein concentration could reproduce
the observed data. Furthermore they provided a basis for the
observed lack of regulation of the timing by demonstrating
that for a long-lived protein, the optimal strategy for precise
event timing is no regulation at all, and that both negative and
positive feedback actually increase the noise in event timing
[21]. The above-mentioned papers were based on calculations
of the first few moments of the first passage time distribution,
while an analytical expression of the full distribution itself
was not available prior to this paper.

There are significant advantages in obtaining the full dis-
tribution of a stochastic biochemical process. For example, it
has been shown that when inferring parameters from data, it
is possible to infer incorrect parameters with only the mean
and the variance of the distribution [27]. However, given the
complexity in even simple molecular biological processes,
there are relatively few exact distributions known. These in-
clude Refs. [28–34]. In this paper we present an analytical
calculation for the first passage time of a long-lived protein
driven by a bursting process to reach a threshold. We show
that the first passage distribution applies even when the pro-
tein has negative or positive autoregulation, showing either
linear kinetics or Hill kinetics. We show that the shape of the
distribution matches the experimental data on lysis times. We
calculate the coefficient of variation of the distribution and
show how it varies with the level of the protein threshold.
Finally, for nonzero protein degradation, we calculate the
Laplace transform of the FPT distribution exactly.

II. MODEL

Consider a gene that is switched on at time t = 0 and
begins to express a timekeeper protein, which triggers an

intracellular event of interest, e.g., lysis, once it reaches a
critical level in the cell. A minimal model of gene expression
assumes translation in bursts and can incorporate feedback
regulation by considering the transcription rate as a function
of the protein level (see Fig. 1). We represent the protein popu-
lation count or number by states [0, 1, ..., X ]. Protein numbers
go up due to bursts of transcription-translation that add a
number of the proteins to the system, while protein numbers
are reduced due to degradation of single proteins. The process
terminates when the protein level reaches a certain threshold
or absorbing-state X for the first time. The corresponding time
t defines the “first passage time” (FPT). The statistics of these
times determines the timing of the intracellular event.

The bursts of protein numbers are assumed to follow a
geometric distribution, as shown previously for protein burst-
size distributions [35]. Thus, the Poisson rate of making a
transition from state i to state i + n is

ri,i+n = ki
bn

(b + 1)n+1
, where, n = {0, 1, 2...}. (1)

Here mean burst size is denoted by b ∈ (0,∞), and n = 0
denotes no change in protein number with probability 1/(b +
1). The net Poisson rate for any burst of size n > 0 out of state
i is thus

∞∑
n=1

ri,i+n = kib/(b + 1). (2)

Each protein molecule degrades with a constant rate γ . For
most of our calculations, we will assume that the proteins are
long-lived and hence we will set the degradation rate γ to 0.

We use the backward master equation (BME) formalism
[36] to calculate the first passage probabilities. The BME de-
scribes the time-evolution of the survival probabilities S(i, t ),
that we define as the probability that the protein count stays
below the threshold X at time t , given that it was at i at time
t = 0, where i = 0, 1, · · · , (X − 1).

If we define a vector S(t ) =
[S(0, t ) S(1, t ) S(2, t ) . . . S(X − 1, t )]T whose
components are survival probabilities, then we may write the
backward master equation as

Ṡ(t ) = AS(t ), (3)

with the initial condition S(t = 0) = [1 1 1 . . . 1]T .
Since the process terminates for protein count reaching any
value �X , the boundary condition is S(i � X, t ) = 0. Taking
into account degradation, the above matrix of Poisson rates, A
is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− bk0
b+1

bk0
(b+1)2 . . . bX−2k0

(b+1)X−1
bX−1k0
(b+1)X

γ −( bk1
b+1 + γ

)
. . . bX−3k1

(b+1)X−2
bX−2k1

(b+1)X−1

... 2γ −( bk2
b+1 + 2γ

) ...
...

...
...

...
...

...

0 0 . . . (X − 1)γ −( bkX−1

b+1 + (X − 1)γ
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)
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Note that the general element in this rate matrix may be written as

Ai j =
{

ki−1bj−i

(b+1) j−i+1 (1 − (b + 1)δi j ) − (i − 1)γ δi j for j � i,
(i − 1)γ δi, j+1 for j < i.

(5)

Furthermore, the diagonal elements of this matrix are
the negative sum of all outgoing rates −γ i − ∑∞

n=1 ri,i+n =
−γ i − kib/(b + 1).

The first passage probability to reach X for the first time
between t to t + dt is f0,X (t )dt , where the FPT distribu-
tion f0,X (t ) is related to the survival probability as f0,X (t ) =
−∂S0,X (t )/∂t . Thus, our objective is to solve for S0,X (t ) and
obtain the desired expression for f0,X (t ).

From here, one may proceed using two different methods.
Integrating Eq. (3) gives

S(t ) = exp(At ) S(0). (6)

The FPT distribution follows from Eqs. (3) and (6) as

f (t ) = −Ṡ(t ) = − ∂

∂t
[exp(At )S(0)]. (7)

Calculation of the full distribution requires the evaluation of
exp(At ), which may be carried out as shown in Appendix F.

An alternative and more elegant method is to use Laplace
Transforms on Eq. (3). If we define S̃ = ∫ ∞

0 e−st Sdt , then
Eq. (3), after performing Laplace transformation, gives

S̃(s) = (sI − A)−1S(0). (8)

We are interested in the case of initial protein number being
0, and in the corresponding first passage distribution

f0,X (t ) = L−1[ f̃0,X (s)] =L−1[1 − sS̃0,X (s)]

=L−1

[
1 − s

X∑
j=1

(sI − A)−1
1 j

]
, (9)

where, L−1 denotes inverse Laplace transformation. In
the last step, we have used the fact that S(t = 0) =
[1 1 1 . . . 1]T .

Both the methods to calculate the full FPT distribution
gives identical results as expected.

III. RESULTS

A. The exact first passage time distribution

1. Unequal transition rates with zero protein degradation (γ = 0)

In the most general case the transition rate constants ki are
all unequal. We outline the solution in the case of γ = 0 as
follows.

Calculating f0,X (t ) requires finding the elements of the
matrix (sI − A)−1 [see Eq. (9)]. The general form of the
elements of (sI − A)−1 is

(sI − A)−1
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

bj−iki−1

(b+1) j−i+1

∏ j−2
q=i (s+kq )∏ j−1

p=i−1

(
s+ bkp

b+1

) if j > i + 1,

bki−1

(b+1)2
(

s+ bki−1
b+1

)(
s+ bki

b+1

) if j = i + 1,

1

s+ bki−1
b+1

if j = i,

0 if j < i.

(10)

To obtain this result, we first evaluated (sI − A)−1 in the
special cases of X = 1, 2, 3, and 4, and then generalized the
mathematical form to any X . Next we need to find the in-
verse Laplace transform of (sI − A)−1 [see Eq. (9)]. Since
all the poles of (sI − A)−1are simple, it is easy to find in-
verse Laplace transform by evaluating the Bromwich integral
by finding residues. We get the exact FPT distribution (see
Appendix A for details) as

f0,X (t )

= bk0

(b + 1)2

[(
k1

k1 − k0
+ b

)
e− bk0t

b+1 +
(

k1

k0 − k1

)
e− bk1t

b+1

+
X∑

j=3

j−1∑
n=0

kn

(b + 1) j−2

∏ j−2
q=1((b + 1)kq − bkn)∏ j−1

p=0,p�=n(kp − kn)
e− bknt

b+1

]
.

(11)

2. Equal transition rates with zero protein degradation (γ = 0)

The case of uniform rates ki = k (corresponding to no
feedback) is special. We see in Eq. (11) that denominators of
various terms go to zero. This may appear to lead to divergent
answers, which is not expected physically for any bounded
function ki. From Eq. (10) setting all ki = k, we get

(sI − A)−1
i j =

⎧⎪⎪⎨
⎪⎪⎩

kbj−i (s+k) j−i−1

(b+1) j−i+1(s+ bk
b+1 ) j−i+1 if j > i,

1
s+ bk

b+1
if j = i,

0 if j < i.

(12)

One way to verify Eq. (12) directly is to check that (sI −
A)−1(sI − A) = I (see Appendix B). Compared to Eq. (10),
in Eq. (12) the poles are not simple but of higher order. Hence,
the Laplace inverse transform leading to the FPT distribution
will not be a sum of pure exponentials. We use the Bromwich
integral and find residues (see Appendix C). The final desired
answer for the first passage time distribution is

f0,X (t ) = kbX

(b + 1)X 1F1

[
1 − X, 1,− kt

b + 1

]
e− kbt

b+1 . (13)

Here 1F1 is the confluent hypergeometric function. An
alternative derivation of Eq. (13), involving interesting math-
ematical identities, are shown in Appendices G and H.

3. Nonzero protein degradation (γ �= 0)

For zero protein degradation rate, we obtained the full FPT
distribution above. Moreover, for the more difficult case of
nonzero degradation rate, we may derive the Laplace trans-
form of the the FPT distribution. Using Eq. (9), we obtain
f̃0,X (s) by calculating 1 − s

∑X
j=1(sI − A)−1

1 j for small values
of X and then generalising to arbirary X as discussed in
Appendix D 1. For the case of equal transition rates ki = k,
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FIG. 2. Theoretical FPT distributions f (t ), are compared with KMC simulations. For stable protein (γ = 0), burst size b = 2, and protein
threshold level X = 500. We show histogram plots of 100 000 simulations performed for linear feedbacks of the for ki = c1 + c2i with
(a) c2 = 0.05 min−1 for positive feedback, (b) c2 = −0.05 min−1 for negative feedback, and (c) c2 = 0 for the no feedback cases. Value
of c1 is chosen such that mean FPT distribution is kept constant at 40 min. The black curves on the top of the histograms are the theoretical
FPT distributions given by Eqs. (11) and (13), for the chosen parameters.

and X > 1, the FPT distribution in the Laplace space is

f̃0,X (s) =
[

bX k
X−1∏
l=1

(γ l + k + s)

] / (
X−1∏
i=0

(γ i + s)

+ bX (k + s)
X−1∏
j=1

(γ j + k + s)

+
X−1∑
n=1

{(
X

n

)
bn

X−1∏
i=0

[γ i + k�(i − X + n) + s]

})
,

(14)

where � denotes Heaviside step function.
The exact Laplace transform above may be used to obtain

moments of any finite order, namely, mth moment 〈T m
0 〉 =

(−1)m dm

dsm f̃0,X (s)|s=0. It may be easily checked using Eq. (14)
that the mean 〈T0〉 and the second moment 〈T 2

0 〉 indeed co-
incide with the earlier results in Ref. [21]. Furthermore, the
third moment with finite degradation, which was not known
in earlier literature, may be calculated using this route—the
lengthy but useful expression is provided in the Appendix D 2.
Thus, the result Eq. (14), athough in Laplace space, may be
used to gain insights into cellular timings.

The expression of f̃0,X (s) [Eq. (14)] above has a polyno-
mial of degree X in the denominator. It is well known that
finding roots exactly of a polynomial beyond some small
values of X is very difficult. Hence, finding inverse Laplace
transform (the FPT distribution) for large X remains in-
tractable for γ �= 0. To demonstrate the complexity of the
poles for even small values of X , we show the pole of f0,X (t )
for X = 3 explicitly in Appendix D 3.

B. Kinetic Monte Carlo results compared
with the exact formulae

To verify Eqs. (11) and (13) we carried out kinetic Monte
Carlo (KMC) simulations for cases of positive, negative, and
no feedback. To compare relative fluctuations, we hold the
mean first passage time same in the three cases. The FPT dis-
tribution is obtained by measuring the times of first passage to
reach the protein number threshold of X = 500 starting from
0 number of proteins. At any instant of time, the system is in a
state i with i number of proteins. In the next step of KMC, any
one of the events by which i → i + n is permitted, where in

principle n ∈ [1,∞). But for practicality, to have a finite set
of events in simulations, we restrict n ∈ [1, X ]. The rates of
the transition of i → i + n are given by Eq. (1). As is usual
for KMC, the events are chosen with probability ri,i+n/Qi,
and the time increments �t are drawn randomly from an
exponential distribution with decay constant Qi, where Qi is
given by Eq. (2). For the simulations, following Ref. [21]
we chose X = 500 protein molecules, and ki = c1 ± c2i for
positive and negative feedback cases, respectively. We have
c2 = 0.05 min−1 for these two cases. For no feedback c2 = 0.
The value of c1 was chosen to be 0.581 min−1, 25.443 min−1,
and 6.275 min−1 for the positive, negative, and zero feedback
cases, respectively, to ensure that all the three cases have a
same mean first passage time of 40 mins (for ease of compar-
ison). We have also chosen b = 2 just as in Ref. [21].

The plots of our KMC simulations and the curves for
f0,X (t ) given by the exact theoretical formulas Eqs. (11) and
(13) are shown in Fig. 2, and they match perfectly.

C. Formulas for moments and cumulants

As discussed earlier in Sec. III A 3, we calculate exact
expressions of the moments, by differentiating the Laplace
transform of the FPT distribution. The details are presented in
Appendix E. This method is relatively easier than integrating
the FPT distribution, as done in Ref. [21]. For the special case
of identical ki = k, the first two moments are given as [21]

〈T0〉 = b + X

bk
and

〈
T 2

0

〉 = 2b2 + 4bX + X 2 + X

(kb)2
, (15)

which gives

CV 2 = σ 2

〈T0〉2
= b2 + X + 2bX

(b + X )2
. (16)

But the explicit form of the higher moments and cumulants
were not given in Ref. [21]. Here, we readily obtain the next
two higher cumulants (see Appendix E):

κ3 = 2

(bk)3
[(1 − X )b3 + X (b + 1)3],

κ4 = 6

(bk)4
[(1 − X )b4 + X (b + 1)4]. (17)

The following definitions of skewness and kurtosis based on
κ3 and κ4 will be used in the next section to compare with the
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FIG. 3. A schematic figure of steps leading to lysis of an E. coli
cell infected by a λ-phage. The blue rhombi represent viruses (in
capsids), and the yellow circles represent the holin protein molecules.

experimental data:

Skewness = κ3

(κ2)
3
2

, Kurtosis = 3 + κ4

κ2
2

. (18)

D. Experimental lysis time distribution in λ phage compared to
the theoretical distribution

Lysis of the host E. coli by an infective λ phage is con-
trolled by a protein from the holin family, S105 or simply
holin, that accumulates in the bacterial cytoplasmic membrane
till it reaches a critical value, when it triggers to form micron-
scale holes in the membrane, releasing an enzyme that rapidly
destroys the bacterial cell wall and frees the viral progeny (see
Fig. 3). The timing of lysis has been shown to be tightly and
precisely controlled by the accumulation of the holin protein,
i.e., by a first passage time process. Since holins have a half-
life larger than the mean lysis time, our results for the FPT of a
long-lived protein are directly applicable [17,18,20,21,37,38].

Holin synthesis does not begin immediately after infection
by the λ phage, but after a delay. To compare the theoretical
distribution with the experimental data, we first have to ac-
count for this delay in the transcription of holin, TpR′ , which
is known from experiments [18] to be ≈15 min. We will also
assume, following Ref. [18], that the standard deviation of TpR′

is small enough to ignore. So lysis time tLT can be related to
first passage time t as

t = tLT − TpR′ , (19)

and it follows that

〈tLT〉 = 〈t〉 + 15 ; σ 2
tLT

= σ 2
t . (20)

We now make the simplified assumptions, following
Refs. [18,21], that (i) there is no feedback, i.e., ki = k, and (ii)
the holins do not degrade easily, i.e., γ = 0. Experimentally
[18] it is known that 〈tLT〉 ≈ 65 min, and σLT ≈ 3.5 min. Just
as in Ref. [18], we take X = 1500. These numbers may be
used in Eqs. (15) and (16) to obtain the parameters

b ≈ 3 ; k ≈ 10 min−1. (21)

Finally, using the above parameters [Eq. (21)], we plot the
theoretical curve for F (tLT) [Eq. (13)] in Fig. 4 against the
available experimental data from Ref. [18]. We can see that
the theoretical distribution, using the above parameters from
Ref. [21] matches the experimental data quite well. However,
what one may do now is test the goodness of the values of
these parameters by fitting the entire exact distribution to the
experimental data.

FIG. 4. Comparison of experimental [18] and theoretical lysis
time distributions. Here we use b = 3, k = 10 min−1 and X = 1500
for the theoretical formula [Eq. (13)].

We first optimized X , keeping other parameters fixed as
follows. We fixed the values of mean first passage time to the
experimentally determined 65 min, and that of the burst size
b to be 3. Using minimization of the residual sum of squares
[39] we found that the best-fit value of X to be very close
to 1500, namely, 1463. Next, we kept only the mean fixed
at 65 min and performed a two-parameter minimization of
the residual sum of squares. The best-fit value of b and X
was found to be 2.6 and 1296, respectively. Though these
more accurate values of the parameters are not significantly
different from the original set of values used in Fig. 4, the
method suggests that in future, higher precision data may lead
to further revisions. The testing of the fitting parameters this
way is possible only because we have the full exact distri-
bution. With first two moments as known earlier, one would
at best have a Gaussian distribution theoretically to compare
with the data. As is well known, the Gaussian fit captures the
central tendency of a data but not the large deviations.

Using b = 3; X = 1500; k = 10 min−1 we proceed fur-
ther to compare the skewness and kurtosis of our predictions
with the experimental values. The theoretical expressions are
shown in Eq. (18) in the previous section. The correspondence
of the calculated values are very close—the theoretically
predicted skewness and kurtosis are 0.0025 and 3.015 as
compared to the experimental values 0.0012 and 3.540, re-
spectively.

E. Feedback effects

Protein synthesis is often characterized by either positive
or negative autoregulation, which can be expected to affect
the first passage time of reaching a threshold. We show here
that we can easily accommodate autoregulation and calculate
the FPT within our framework. Equation (11) is couched
in terms of generic ki, which is the parameter that controls
protein synthesis rates in the model. As can be seen from
Eq. (2), ki controls the Poisson rate out of state i. Thus, ki

can be a function of i, representing the case when protein
production is under some form of auto-regulation. Positive
autoregulation corresponds to ki increasing with increasing i,
while in negative autoregulation ki decreases with increasing
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FIG. 5. For stable protein (γ = 0) and for burst size, b = 3, noise
in FPT (CV 2) is plotted as a function of protein threshold value (X )
for different kinds of positive feedback: (a) Linear feedback, ki =
1.5 + 0.0725i and (b) hill feedback ki = 15(0.1+(0.008i)15 )

1+(0.008i)15 .

i. For both positive and negative self-regulation, we can nu-
merically calculate the full distribution of first passage times
by inputting the form of the self-regulation in Eq. (11). This
would be valuable for experiments on first passage times for
autoregulated genes.

One of the important questions we can ask here is whether
incorporation of feedback has an impact on the noise in first
passage times or not, which determines the accuracy of a
FPT-based molecular clock. For a given level of threshold,
Ref. [21] already compared the relative noise for the case
of no feedback, positive feedback and negative feedback and
found that the no feedback case typically has the lower level
of noise. We show in Eq. (16) that for the no-regulation case
the CV depends only on the burst size and the value of the
threshold X . With addition of any kind of feedback, negative
or positive, we are adding extra noise as a consequence of
temporal inhomogeneity of the translation process, on top of
the unavoidable Poissonian noise of translational burst.

If protein synthesis is governed by autoregulation, then we
can ask what optimal value of the threshold, X , minimizes the
noise in the FPT . We calculate this below for both the cases
of positive and negative feedback.

1. Positive feedback

We implemented positive feedback using either a linear
function,

ki = α + βi, (22)

or a Hill function,

ki = α
γ + (βi)n

1 + (βi)n
. (23)

For numerical calculation we need to choose explicit nu-
merical forms of these functions. Using arbitrarily chosen
numerical parameters we plotted the coefficient of variation of
the distribution as calculated using our results above against
the protein threshold, X . The results are shown in Fig. 5, and
they show that the relative noise in the FPT distribution re-
duces with increasing X (or equivalently with increasing mean
FPT), but then effectively plateaus, or declines very slowly.
Interestingly this behavior can be seen in both forms of the
feedback. If reducing noise has fitness benefits, then molecu-
lar clocks based on positively autoregulated genes would be
characterized by relatively large protein thresholds.

FIG. 6. For stable protein (γ = 0) and for burst size, b = 10,
noise in FPT (CV 2) is plotted as a function of (a) protein threshold
value (X ) and (b) mean FPT, for linear and hill negative feedbacks
are plotted. For the linear feeback, the transription rate amplitude
and feedback strengths are varied to see how the optimal mean and
X depends on them.

2. Negative feedback

The case of negative feedback turned out to be more in-
teresting. We used a linear form of negative feedback, ki =
α − βi, as well as a Hill function form, given by

ki = α

1 + (βi)n
. (24)

Our results are shown in Fig. 6. It may be seen that for the
Hill function there is a monotonic decrease, while for the
linear case, the noise in the FPT times first decreases and
then increases, yielding a U-shaped curve. It was recently
shown in Ref. [40] that the CV of lysis timing for different
bacteriophage mutants as a function of the effective protein
threshold is also U-shaped. In that paper they attributed this
effect to the effect of dilution due to bacterial growth. We
show here that a general negative feedback that may arise
due to dilution, or possibly could be caused by some as yet
undiscovered mechanism, reproduces this relationship. More
generally, for a negatively autoregulated gene, minimization
of noise would lead to the system settling at the threshold that
yields the global noise minima.
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IV. DISCUSSION

In biology, it is often very difficult to find exact distri-
butions of even simple stochastic processes. In those cases,
people resort to expressions of mean and variance. But, the
mean and variance contain partial information about a pro-
cess, and in particular do not capture large deviations from
central values. Analytic expression for full distributions are
thus desirable when possible.

Many a time, the differences in time scales of various
subprocesses involved are exploited to simplify the dynamics
of the stochastic process, to make the problem analytically
solvable or simpler. For long time, people relied on mean
and variance of protein concentration in the gene expression
of two-state promoter system. Only recently, for some lim-
iting timescale of protein lifetime, the steady state protein
distribution could be calculated for the same problem [28]. In
another example [34], time-dependent distributions of mRNA
and protein numbers are obtained, for detailed model of gene
expression, by using biologically relevant timescale approxi-
mations.

In this paper, we used a similar strategy, where in the bulk
of the paper we ignored protein degradation, and calculated
exact FPT distribution for protein thresholds. This assumption
is valid for stable proteins whose mean lifetime is much longer
than the event timescale. Otherwise, our results are very
general. An additional strength of these results lie in being
able to predict the exact distribution with arbitrary types of
feedback. Many proteins exhibit auto-regulation, thus acting
as self-activators or self-repressors, which could in principle
manifest as arbitrary functional forms of feedback. Indirect
feedback of protein levels upon their own transcription and
translation is also common, and could again be approximated
as self-regulation. In all such cases where we can impute a
functional form for the parameter k(i), the exact FPT distribu-
tion can be calculated by inputting that form into the general
formulas obtained above. In principle, we can also solve the

inverse problem and get insight about the dynamics of the
process by measuring the experimental FPT distribution and
using it to deduce the functional form of the feedback. Thus,
high precision experimental data on the FPT of lysis by λ

phage or any other similar process would be very valuable
to help us discriminate between these different possibilities
using the analytical expressions derived here.

While the bulk of the paper operates under the assumption
of long-lived proteins, we also calculate the exact FPT dis-
tribution in Laplace case for nonzero degradation. We show
that for the case with protein degradation, the main analytical
difficulty is the complexity of the poles of the Laplace Trans-
form, which involve solutions of very high order polynomial
equations. We have also studied the noise in first passage
times as described by CV and shown that for linear negative
feedback, it has a minimum at an optimal protein threshold as
well as at a value of the mean first passage time.

Given their simplicity, protein hourglasses, where the cells
time a process using the first passage time of a protein level
reaching a threshold, are likely to be widespread in cell biol-
ogy. One can exploit the analytic expression of the distribution
we obtained, to find the probability distribution of other cel-
lular processes that depend on the FPT. One such example is
the stochastic number of viral progeny on lysis, or the viral
burst-size distribution, after a host-cell infection. We hope to
extend our work towards these applications in future.
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APPENDIX A: FPT DISTRIBUTION CALCULATION FOR UNEQUAL TRANSITION RATES AND γ = 0

For a Laplace transform f (s), the inverse transform is given by

L−1[ f (s)] = 1

2π i
limT →∞

∫ γ+iT

γ−iT
est f (s)ds, (A1)

where the integration is done along the vertical line Re(s) = γ in the complex plane such that γ is greater than the real part of
all singularities of f (s) and f (s) is bounded on the line. As we will see later, f (s) in our case is always of the form P(s)/Q(s),
where P and Q are polynomials of s and degree of Q is greater than that of P. Such functions are always bounded over the entire
complex plane except at the finite number of poles. So, we can always find the vertical line Re(s) = γ such that the boundedness
condition is satisfied. Also, P(s)/Q(s) → 0 as s → ∞. So, we can do integration in an infinite D-shaped contour. Then, in our
case, using residue theorem, Eq. (A1) becomes [41]

L−1[ f (s)] = 1

2π i

∑
pi

Res[est f (s)],

where the summation is over all the poles, pi, of f (s). So,

L−1[ f (s)] =
∑

pi

1

(ni − 1)!

dni−1

dsni−1
[(s − pi )

ni est f (s)]

∣∣∣∣
s=pi

, (A2)

where ni is the order of ith pole, pi.
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For this general case of unequal transition rates with no protein degradation, recall from the main text

(sI − A)−1
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

bj−iki−1

(b+1) j−i+1

∏ j−2
q=i (s+kq )∏ j−1

p=i−1

(
s+ bkp

b+1

) if j > i + 1,

ki−1

(b+1)2
(

s+ bki−1
b+1

)(
s+ bki

b+1

) if j = i + 1,

1

s+ bki−1
b+1

if j = i,

0 if j < i,

(A3)

and

f0,X (t ) = L−1

[
1 − s

X∑
j=1

(sI − A)−1
1 j

]
. (A4)

For X = 1,

f0,1(t ) = L−1
[
1 − s(sI − A)−1

11

]
= L−1

[
1 − s

s + bk0
b+1

]

= bk0

b + 1
L−1

[
1

s + bk0
b+1

]

= bk0

b + 1
e

−bk0t
b+1 .

For X = 2,

f0,2(t ) = L−1
[
1 − s(sI − A)−1

11 − s(sI − A)−1
12

]
= bk0

b + 1
e

−bk0t
b+1 + bk0

(b + 1)2
L−1

[
s(

s + bk0
b+1

)(
s + bk1

b+1

)
]

= bk0

b + 1
e

−bk0t
b+1 − bk0

(b + 1)2

[
− bk0

b + 1

e
−bk0t
b+1

−bk0
b+1 + bk1

b+1

− bk1

b + 1

e
−bk1t
b+1

−bk1
b+1 + bk0

b+1

]
... using Eq. (A2)

= bk0

(b + 1)2

[(
k1

k1 − k0
+ b

)
e− bk0t

b+1 +
(

k1

k0 − k1

)
e− bk1t

b+1

]
.

For X > 2,

f0,X (t ) =L−1
[
1 − s(sI − A)−1

11 − s(sI − A)−1
12

] − L−1

[
s

X∑
j=3

(sI − A)−1
1 j

]

= bk0

(b + 1)2

[(
k1

k1 − k0
+ b

)
e− bk0t

b+1 +
(

k1

k0 − k1

)
e− bk1t

b+1

]
−

X∑
j=3

bj−1k0

(b + 1) j
L−1

[
s

∏ j−2
q=1(s + kq)∏ j−1

p=0

(
s + bkp

b+1

)
]
.

For each j, there are j number of simple poles at bkn/(b + 1) with n going from 0 to j − 1. So using Eq. (A2), we have

= bk0

(b + 1)2

[(
k1

k1 − k0
+ b

)
e− bk0t

b+1 +
(

k1

k0 − k1

)
e− bk1t

b+1

]
−

X∑
j=3

bj−1k0

(b + 1) j

j−1∑
n=0

[
− bkn

b + 1

∏ j−2
q=1

(− bkn
b+1 + kq

)
∏ j−1

p=0,p�=n

(− bkn
b+1 + bkp

b+1

)e− bknt
b+1

]

= bk0

(b + 1)2

[(
k1

k1 − k0
+ b

)
e− bk0t

b+1 +
(

k1

k0 − k1

)
e− bk1t

b+1 +
X∑

j=3

j−1∑
n=0

kn

(b + 1) j−2

∏ j−2
q=1((b + 1)kq − bkn)∏ j−1

p=0,p�=n(kp − kn)
e− bknt

b+1

]
.

APPENDIX B: PROOF OF (sI − A)−1(sI − A) = I FOR SPECIAL CASE OF EQUAL TRANSITION RATES AND GAMMA =0

(sI − A)−1
i j =

⎧⎪⎨
⎪⎩

kbj−i (s+k) j−i−1

(b+1) j−i+1(s+ bk
b+1 ) j−i+1 if j > i,

1
s+ bk

b+1
if j = i,

0 if j < i.

(B1)
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From Eq. (5) in main text,

(sI − A)i j =
⎧⎨
⎩

− kbj−i

(b+1) j−i+1 if j > i,
s + kb

b+1 if j = i,
0 if j < i.

(B2)

Product of two upper triangular matrices is also upper triangular. So,
[(sI − A)−1(sI − A)]i j = 0 for j < i.
Also, [(sI − A)−1(sI − A)]ii = (sI − A)−1

ii (sI − A)ii = 1
s+ bk

b+1
(s + kb

b+1 ) = 1.

For j > i,

[(sI − A)−1(sI − A)]i j =
j∑

m=i

(sI − A)−1
im (sI − A)m j

=(sI − A)−1
ii (sI − A)i j + (sI − A)−1

i j (sI − A) j j +
j−1∑

m=i+1

(sI − A)−1
im (sI − A)m j

= − 1

s + kb
b+1

kbj−i

(b + 1) j−i+1
− kbj−i(s + k) j−i−1

(b + 1) j−i+1
(
s + bk

b+1

) j−i +
j−1∑

m=i+1

(sI − A)−1
im (sI − A)m j

= − 1

s + kb
b+1

kbj−i

(b + 1) j−i+1

[
1 −

(
s + k

s + bk
b+1

) j−i−1]
+

j−1∑
m=i+1

(sI − A)−1
im (sI − A)m j, (B3)

j−1∑
m=i+1

(sI − A)−1
im (sI − A)m j = k2bj−i(s + k)−i−1

(b + 1) j−i+2
(
s + bk

b+1

)−i+1

j−1∑
m=i+1

(
s + k

s + bk
b+1

)m

= k2bj−i(s + k)−i−1

(b + 1) j−i+2
(
s + bk

b+1

)−i+1

[
1 − (

s+k
s+ bk

b+1

) j−i−1]
1 − s+k

s+ bk
b+1

= 1

s + kb
b+1

kbj−i

(b + 1) j−i+1

[
1 −

(
s + k

s + bk
b+1

) j−i−1]
. (B4)

Putting Eq. (B4) into Eq. (B3), we get

[(sI − A)−1(sI − A)]i j = 0.

Hence, (sI − A)−1(sI − A) = I.

APPENDIX C: FPT DISTRIBUTION CALCULATION FOR SPECIAL CASE OF EQUAL TRANSITION RATES AND γ = 0

(sI − A)−1
i j =

⎧⎪⎨
⎪⎩

kbj−i (s+k) j−i−1

(b+1) j−i+1(s+ bk
b+1 ) j−i+1 if j > i,

1
s+ bk

b+1
if j = i,

0 if j < i.

(C1)

We know that f̃0,X (s) = 1 − sS̃0,X (s). So,

f̃0,X (s) =1 − s
X∑

j=1

(sI − A)−1
1 j

=1 − s

s + bk
b+1

− s
X∑

j=2

kbj−1(s + k) j−2

(b + 1) j
(
s + bk

b+1

) j

=
bk

b+1

s + bk
b+1

− sk

b(s + k)2

X∑
j=2

bj (s + k) j

(b + 1) j
(
s + bk

b+1

) j
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=
bk

b+1

s + bk
b+1

− sk

b(s + k)2

b2(s + k)2

(b + 1)2
(
s + bk

b+1

)2

1 − bX−1(s+k)X−1

(b+1)X−1
(

s+ bk
b+1

)X−1

1 − b(s+k)

(b+1)
(

s+ bk
b+1

)

=
bk

b+1

s + bk
b+1

− sk

b(s + k)2

b2(s + k)2

(b + 1)
(
s + bk

b+1

)
1 − bX−1(s+k)X−1

(b+1)X−1
(

s+ bk
b+1

)X−1

(b + 1)
(
s + bk

b+1

) − b(s + k)

=
bk

b+1

s + bk
b+1

−
bk

b+1

s + bk
b+1

[
1 − bX−1(s + k)X−1

(b + 1)X−1
(
s + bk

b+1

)X−1

]

= kbX (s + k)X−1

(b + 1)X
(
s + bk

b+1

)X .

Using Eq. (A2),

f0,X (t ) =L−1[ f̃0,X (s)]

= kbX

(b + 1)X
L−1

[
(s + k)X−1(
s + bk

b+1

)X

]

= kbX

(b + 1)X

1

(X − 1)!

dX−1

dsX−1
[est (s + k)X−1]

∣∣∣∣
s=− bk

b+1

.

We can use Leibniz rule to calculate (X − 1)th derivative

= kbX

(b + 1)X

1

(X − 1)!

X−1∑
n=0

(
X − 1

n

)
t nest (X − 1)!

n!
(s + k)n

∣∣∣∣
s=− bk

b+1

= kbX

(b + 1)X

[
X−1∑
n=0

1

n!

(
X − 1

n

)(
kt

b + 1

)n
]

e− kbt
b+1 .

The term inside the square bracket is a confluent hypergeometric function 1F1, and hence

f0,X (t ) = kbX

(b + 1)X 1F1

[
1 − X, 1,− kt

b + 1

]
e− kbt

b+1 . (C2)

APPENDIX D: FINITE DEGRADATION RATE (γ �= 0), ALONG WITH EQUAL TRANSITION RATES ki = k

1. FPT distribution in Laplace space

We first evaluate f̃0,X (s) = 1 − s
∑X

j=1(sI − A)−1
1 j for small values of X as follows.

For X = 1,

f̃0,X (s) = bk

b(k + s) + s
. (D1)

For X = 2,

f̃0,X (s) = b2k(γ + k + s)

b2(k + s)(γ + k + s) + 2bs(γ + k + s) + s(γ + s)
. (D2)

For X = 3,

f̃0,X (s) = b3k(γ + k + s)(2γ + k + s)

b3(k + s)(γ + k + s)(2γ + k + s) + 3b2s(γ + k + s)(2γ + k + s) + 3bs(γ + s)(2γ + k + s) + s(γ + s)(2γ + s)
.

(D3)

For X = 4,

f̃0,X (s) =[b4k(γ + k + s)(2γ + k + s)(3γ + k + s)] /[b4(k + s)(γ + k + s)(2γ + k + s)(3γ + k + s)

+ 4b3s(γ + k + s)(2γ + k + s)(3γ + k + s) + 6b2s(γ + s)(2γ + k + s)(3γ + k + s)

+ 4bs(γ + s)(2γ + s)(3γ + k + s) + s(γ + s)(2γ + s)(3γ + s)]. (D4)
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From the above one may see a pattern, which is readily generalized to any arbitrary X > 1:

f̃0,X (s) = bX k
∏X−1

l=1 (γ l + k + s)∏X−1
i=0 (γ i + s) + bX (k + s)

∏X−1
j=1 (γ j + k + s) + ∑X−1

n=1

[(X
n

)
bn

∏X−1
i=0 (γ i + k�(i − X + n) + s)

] . (D5)

2. Third moment calculation from the Laplace transform of the FPT distribution

As discussed in the main text (Sec. III A 3), moments can be easily calculated by taking derivatives of f̃0,X (s):
The mth moment, 〈T m

0 〉 = (−1)m dm

dsm f̃0,X (s)|s=0.
Consequently, the third moment

〈
T 3

0

〉 = −∂3 f̃0,X (s)

∂s3

∣∣∣∣
s→0

. (D6)

Putting Eq. (14) in Eq. (D6) and doing successive differentiation, we get

〈
T 3

0

〉 = b−3X

γ 3k3P(1, X−1)3

(
6

(
γ

( X−1∑
n=1

bn(−n + X − 1)!

(
X

n

)
γ −n+X−1P(X − n, X − 1)

)
+ (X − 1)!γ X

)
3 + 6γ 3b3X P(1, X −1)3

+ 6bX P(1, X −1)

(
γ

( X−1∑
n=1

bn(−n + X −1)!

(
X

n

)
γ −n+X−1P(X − n, X − 1)

)
+ (X − 1)!γ X

)(
−2k(X − 1)!HX−1,1γ

X

+ γ

(
−kγ

X−1∑
n=1

(2(−n + X − 1)!γ −n+X−2H−n+X−1,1P(X − n, X − 1) + 2γ −n+X−1(−n + X − 1)!P(X − n, X − 1)

S1(X − n, X − 1)) + (X − 1)!γ X (2kS1(1, X − 1) + 3) + γ

X−1∑
n=1

bn(−n + X − 1)!

(
X

n

)
γ −n+X−1P(X − n, X − 1)

2kS1(1, X − 1) + 3

))
+ b2X P(1, X − 1)2

(
3k2(X − 1)!γ X HX−1,2 − 3k2(X − 1)!γ X H2

X−1,1 − 6k(X − 1)!γ X+1HX−1,1

kS1(1, X − 1) + 2 + γ 2

(
18(X − 1)!γ X + k2γ

X−1∑
n=1

(
3(−n + X − 1)!γ −n+X−3

(
H−n+X−1,2 − H2

−n+X−1,1

)
P(X − n, X − 1)

+ 6(−n + X − 1)!γ −n+X−2H−n+X−1,1P(X − n, X − 1)S1(X − n, X − 1) + 3(−n + X − 1)!γ −n+X−1P(X − n, X − 1)

S1(X − n, X − 1)2 − S2(X − n, X − 1)
) + 12k(X − 1)!γ X S1(1, X − 1) + 3k2(X − 1)!γ X S1(1, X − 1)2 − 3γ k( X−1∑

n=1

(2(−n + X − 1)!γ −n+X−2H−n+X−1,1P(X − n, X − 1) + 2(−n + X − 1)!γ −n+X−1P(X − n, X − 1)

S1(X − n, X − 1))

)
kS1(1, X − 1) + 2 + 3k2(X − 1)!γ X S2(1, X − 1) + 3γ

( X−1∑
n=1

bn(−n + X − 1)!

(
X

n

)
γ −n+X−1

P(X − n, X − 1))k2S1(1, X − 1)2 + k2S2(1, X − 1) + 4kS1(1, X − 1) + 6

)))
.

In the above, the following notations have been used:
Hn,m = ∑n

i=1
1
im , P(a, b) = ∏b

i=a(γ i + k), and Sm(a, b) = ∑b
i=a

1
(γ i+k)m .

3. Demonstrating the complexity of the poles of the Laplace transform, even for small X

Consider X = 3, and the expression of the Laplace transform of the FPT distribution derived above in Eq. (D3). The
denominator may be factorised as follows to find the poles of the function exactly at −β,−δ, and −δ∗,

f̃0,3(s) = b3k(s + k + γ )(s + k + 2γ )

(b + 1)3(s + β )(s + δ)(s + δ∗)
,
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where

β = −
3

√
2
3 (b + 1)γ [(b + 1)2γ + 3bk]

3

√√
3
√

(b + 1)12γ 3[−108b3k3 − 27b2(b + 3)(3b + 1)γ k2 − 4(b + 1)6γ 3 − 36b(b + 1)4γ 2k] + 9(b − 1)b(b + 1)6γ 2k

−
3

√√
3
√

(b + 1)12γ 3[−108b3k3 − 27b2(b + 3)(3b + 1)γ k2 − 4(b + 1)6γ 3 − 36b(b + 1)4γ 2k] + 9(b − 1)b(b + 1)6γ 2k
3
√

232/3(b + 1)3

+ bk

b + 1
+ γ ,

and δ and δ∗ are complex conjugates with

δ = i(
√

3 − i)(b + 1)γ [(b + 1)2γ + 3bk]

22/3 3
√

3 3

√√
3
√

(b + 1)12γ 3[−108b3k3 − 27b2(b + 3)(3b + 1)γ k2 − 4(b + 1)6γ 3 − 36b(b + 1)4γ 2k] + 9(b − 1)b(b + 1)6γ 2k

−
i(
√

3 + i) 3

√√
3
√

(b + 1)12γ 3[−108b3k3 − 27b2(b + 3)(3b + 1)γ k2 − 4(b + 1)6γ 3 − 36b(b + 1)4γ 2k] + 9(b − 1)b(b + 1)6γ 2k

2 3
√

232/3(b + 1)3

+ bk

b + 1
+ γ .

Using Eq. (A2), we get

f0,3(t ) = b3k

(b + 1)3

[
(k + γ − β )(k + 2γ − β )

(δ − β )(δ∗ − β )
e−βt + (k + γ − δ)(k + 2γ − δ)

(β − δ)(δ∗ − δ)
e−δt + (k + γ − δ∗)(k + 2γ − δ∗)

(β − δ∗)(δ − δ∗)
e−δ∗t

]
.

The above X = 3 case demonstrates that the poles of the Laplace transform for higher values of X would generally be very
cumbersome, and hence solving the problem in the time domain for the full FPT distribution remains challenging for γ �= 0.

APPENDIX E: CALCULATION OF MOMENTS FROM THE LAPLACE TRANSFORM
OF THE FPT DISTRIBUTION FOR γ = 0

First moment:

〈T0〉 = −∂ f̃0,X (s)

∂s
= − ∂

∂s

[
1 − s

X∑
j=1

(sI − A)−1
1 j

]∣∣∣∣
s→0

=
X∑

j=1

(sI − A)−1
1 j

∣∣∣∣
s→0

= b + 1

bk0
+ b

(b + 1)2

b + 1

b

b + 1

bk1
+

X∑
j=3

bj−1k0

(b + 1) j

1

k0k j−1
(

b
b+1

) j

= 1

k0
+ 1

b

X−1∑
j=0

1

k j
. (E1)

Second moment:

〈
T 2

0

〉 =∂2 f̃0,X (s)

∂s2
= ∂2

∂s2

[
1 − s

X∑
j=1

(sI − A)−1
1 j

]∣∣∣∣
s→0

= −2
∂

∂s

[
X∑

j=1

(sI − A)−1
1 j

]∣∣∣∣
s→0

= − 2

[
− 1( bk0

b+1

)2 − k0b

(b + 1)2

bk1
b+1 + bk0

b+1( bk0
b+1

)2( bk1
b+1

)2 +
X∑

j=3

bj−1k0

(b + 1) j

1

k0k j−1
(

b
b+1

) j

(
j−2∑
q=1

1

kq
−

j−1∑
p=0

1
bkp

b+1

)]

= − 2

[
− (b + 1)2

b2k2
0

− b + 1

b2

(
1

k0k1
+ 1

k2
1

)
+

X−1∑
j=2

1

bk j

(
− 1

k0
− 1

k j
− 1

b

j∑
p=0

1

kp

)]

= 2

[
1

k2
0

+
X−1∑
j=0

1

bk j

(
1

k0
+ 1

k j
+ 1

b

j∑
p=0

1

kp

)]
= 2

b2

[
bτ0

k0
+

X−1∑
j=0

τ j

k j

]
, (E2)

where τ j = b
k j

+ ∑X−1
m= j

1
km

.
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Similarly, we can calculate the third and fourth moments:

〈T 3
0 〉 = 3

∂2

∂s2

[ X∑
j=1

(sI − A)−1
1 j

]∣∣∣∣
s→0

= 6

b2

X∑
j=1

j∑
p=1

1 + bδp j

kp−1k j−1

[
1

kp−1
+ 1

k0
+ bδ1p

k0
+ 1

b

p∑
m=1

1

km−1

]
, (E3)

〈
T 4

0

〉 = −4
∂3

∂s3

[ X∑
j=1

(sI − A)−1
1 j

]∣∣∣∣
s→0

= 24
X∑

j=1

j∑
p=1

1

b2kp−1k j−1

[
1

kp−1
+ 1

k0
+ bδ1p

k0
+ 1

b

p∑
m=1

1

km−1

][
1

k j−1
+ 1

kp−1
+ bδp j

kp−1
+ 1

b

j∑
n=p

1

kn−1

]
. (E4)

Using the above expressions of 〈T0〉, 〈T 2
0 〉, 〈T 3

0 〉, and 〈T 4
0 〉, we can calculate the third and fourth cumulants for the case of

equal translation rates (ki = k):

κ3 = 2

(bk)3
[(1 − X )b3 + X (b + 1)3], κ4 = 6

(bk)4
[(1 − X )b4 + X (b + 1)4]. (E5)

APPENDIX F: ALTERNATIVE FORMALISM TO CALCULATE FPT DISTRIBUTION FOR GENERAL CASE OF UNEQUAL
TRANSITION RATES WITH NO DEGRADATION

Here we begin with Eq. (7) in the main text and evaluate exp(At ).
First, we note from Eq. (5) in main text that matrix A is upper triangular, for γ = 0, and hence the eigenvalues are given by

its diagonal elements:

λ j = − bk j−1

(b + 1)
. (F1)

Next, we show that the matrix which diagonalizes A such that D−1AD = AD (with (AD)i j = λ jδi j) has its elements given by

Di j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ki−1

(b+1) j−i

∏ j−2
p=i ((b+1)kp−bk j−1 )∏ j−2

p=i−1(kp−k j−1 )
if j > i + 1,

ki−1

(b+1)(ki−1−ki )
if j = i + 1,

1 if j = i,
0 if j < i.

(F2)

With the above form of D it may be shown directly that

AD j = λ jD j, (F3)

such that the vector D j is the jth column of D and an eigenvector of A.
Proof of AD j = λ jD j:
Using Eqs. (5) (in main text), (F1), and (F2), we get for j > (i + 1),

(AD j )i = (AD)i j =
j∑

m=i

AimDm j = ki−1

j−2∑
m=i

bm−i(1 − (b + 1)δim)

(b + 1)m−i+1

km−1

(b + 1) j−m

∏ j−2
p=m[(b + 1)kp − bk j−1]∏ j−2

p=m−1(kp − k j−1)

+ ki−1bj−1−i

(b + 1) j−i+1

k j−2

(b + 1)(k j−2 − k j−1)
+ ki−1bj−i

(b + 1) j−i+1

= ki−1bY

(b + 1) j−i+1
∏ j−2

p=i−1(kp − k j−1)

=−k j−1bki−1
∏ j−2

p=i [(b + 1)kp − bk j−1]

(b + 1) j−i+1
∏ j−2

p=i−1(kp − k j−1)
= λ jDi j = λ j (D j )i. (F4)
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The quantity Y in the intermediate state above is a sum of several terms as follows, which simplify on repeated factorisation and
cancellation to give the short expression in the last step above:

Y = −ki−1

j−2∏
p=i

[(b + 1)kp − bk j−1] +
j−2∑
m=i

bm−i

{ m−1∏
p=i−1

(kp − k j−1) km

j−2∏
q=m+1

[(b + 1)kq − bk j−1]

}
+ bj−i−1

j−2∏
p=i−1

(kp − k j−1).

(F5)

In the special case of j = i + 1,

(ADi+1)i = (AD)i,i+1 = −bk2
i−1

(b + 1)2(ki−1 − ki )
+ bki−1

(b + 1)2
=

[ −bki

(b + 1)

][
ki−1

(b + 1)(ki−1 − ki )

]
= λi+1Di,i+1, (F6)

and for j = i,

(ADi )i = (AD)ii = −bki−1

(b + 1)
= λiDii. (F7)

Hence, proved.
The elements of the inverse matrix D−1 is given by

D−1
i j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ki−1

(b+1) j−i

∏ j−2
p=i ((b+1)kp−bki−1 )∏ j−1

p=i (kp−ki−1 )
if j > i + 1,

ki−1

(b+1)(ki−ki−1 ) if j = i + 1,

1 if j = i,

0 if j < i.

(F8)

Using the above diagonal form, the vector of different first passage probability distributions in Eq. (7) may be written as

f (t ) = − ∂

∂t
[DPD−1S(0)], (F9)

where P = exp(ADt ) = D−1 exp(At )D. Thus, (P)mn = exp(λmt )δmn. Moreover, we are interested in the case of initial protein
number being 0, and in the corresponding first passage distribution

f0,X (t ) = [f (t )]1 = − ∂

∂t

X∑
j=1

(DPD−1)1 j[S(0)] j . (F10)

From Eq. (F8), [PD−1]i j = exp(− ki−1bt
b+1 )D−1

i j , and then it follows from Eq. (F2) that

[DPD−1]i j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ki−1

(b+1) j−i

∑ j−1
n=i−1 e− knbt

b+1

∏ j−2
p=i [(b+1)kp−bkn]∏ j−1
p=i−1,p�=n(kp−kn )

if j > i + 1,

ki−1

(b+1)(ki−ki−1 )

(
e− ki−1bt

b+1 − e− kibt
b+1

)
if j = i + 1,

e− ki−1bt
b+1 if j = i,

0 if j < i.

(F11)

Recalling that all the elements of S(0) are 1, we have from Eq. (F10),

f0,X (t ) = − ∂

∂t

X∑
j=1

(DPD−1)1 j

= − ∂

∂t

{
e− k0bt

b+1 + k0

(b + 1)(k1 − k0)

(
e− k0bt

b+1 − e− k1bt
b+1

) +
X∑

j=3

k0

(b + 1) j−1

j−1∑
n=0

e− knbt
b+1

∏ j−2
p=1[(b + 1)kp − bkn]∏ j−1

p=0,p�=n(kp − kn)

}

= k0b

(b + 1)2

{(
k1

k1 − k0
+ b

)
e− bk0t

b+1 +
(

k1

k0 − k1

)
e− bk1t

b+1 +
X∑

j=3

j−1∑
n=0

kn

(b + 1) j−2

∏ j−2
p=1[(b + 1)kp − bkn]∏ j−1

p=0,p�=n(kp − kn)
e− bknt

b+1

}
. (F12)

The above expression is valid for X > 2, and for the special cases of X = 1,

f0,1(t ) = k0b

b + 1
e− bk0t

b+1 , (F13)
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and X = 2,

f0,2(t ) = k0b

(b + 1)2

[(
b + k1

k1 − k0

)
e− bk0t

b+1 + k1

k0 − k1
e− bk1t

b+1

]
. (F14)

APPENDIX G: ALTERNATIVE FORMALISM TO CALCULATE FPT DISTRIBUTION FOR SPECIAL CASE OF EQUAL
TRANSITION RATES WITH NO DEGRADATION

As mentioned in the main text, we can take proper limit of Eq. (11) to get non divergent FPT expression for this special case.
We first write the first passage distributions for X = 1, 2, 3, 4 below in a particular way to observe a pattern:

X = 1 : f0,1(t ) = k0b

1 + b
e−ak0

X = 2 : f0,2(t ) = k0b

(b + 1)2

[
be−ak0 + k1

(
e−ak0

ε10
+ e−ak1

ε01

)]

X = 3 : f0,3(t ) = k0b

(b + 1)3

[
b2e−ak0 + bk1

(
e−ak0

ε10
+ e−ak1

ε01

)
+ bk2

(
e−ak0

ε20
+ e−ak2

ε02

)

+ k1k2

(
e−ak0

ε10ε20
+ e−ak1

ε21ε01
+ e−ak2

ε12ε02

)]

X = 4 : f0,4(t ) = k0b

(b + 1)4

[
b3e−ak0 + b2k1

(
e−ak0

ε10
+ e−ak1

ε01

)
+ b2k2

(
e−ak0

ε20
+ e−ak2

ε02

)

+ b2k3

(
e−ak0

ε30
+ e−ak3

ε03

)
+ bk1k2

(
e−ak0

ε10ε20
+ e−ak1

ε21ε01
+ e−ak2

ε12ε02

)
+ bk2k3

(
e−ak0

ε30ε20
+ e−ak2

ε02ε32
+ e−ak3

ε23ε03

)

+ bk1k3

(
e−ak0

ε10ε30
+ e−ak1

ε31ε01
+ e−ak3

ε03ε13

)
+ k1k2k3

(
e−ak0

ε10ε20ε30
+ e−ak1

ε01ε21ε31
+ e−ak2

ε02ε12ε32
+ e−ak3

ε03ε13ε23

)]
. (G1)

In the above, a = bt/(b + 1) and εi j = (ki − k j ). Note that in Eqs. (G1), every coefficient within parentheses (...) may be
represented by a symbol C(m)

I involving a certain set of integers I = {0, i1, i2, · · · , im}. The general form of the coefficient is as
follows:

C(m)
I =

im∑
j=0,i1,i2,···

e−ak j∏
p∈I,p�= j εp j

. (G2)

The coefficients C(m)
I have prefactors bX−1−mki1 ki2 · · · kim , and terms corresponding to all possible

(X−1
m

)
combinations (comb) of

m integers out of the set {1, 2, · · · , X − 1} are added. Thus, the general form of f0,X (t ), with C(m)
I from Eq. (G2), is finally,

f0,X (t ) = k0b

(b + 1)X

X−1∑
m=0

bX−1−m
∑
comb

ki1 ki2 · · · kimC(m)
I . (G3)

We then take the limit that k j for all j approach the same value k by first writing k j = k + � j and taking lim� → 0. By
writing the exponential in the numerator of Eq. (G2) in series form, and noting all terms for l > m vanish with � → 0, we have
lim�→0C

(m)
I given by

im∑
j=0,i1,i2,···

e−ak
[
1 + ∑m

l=1
(−a� j)l

l!

]
(−�)m

∏
p∈I,p�= j ( j − p)

= e−ak

(−�)m

[ im∑
j=0,i1,i2,···

1∏
p∈I,p�= j ( j − p)

+
m∑

l=1

(−a�)l

l!

im∑
j=0,i1,i2,···

jl∏
p∈I,p�= j ( j − p)

]
.

At this point we assume the following two identities (see the discussion on proofs of these in Appendix H below):

im∑
j=0,i1,i2,···

1∏
p∈I,p�= j ( j − p)

= 0 and
im∑

j=0,i1,i2,···

jl∏
p∈I,p�= j ( j − p)

= δlm, (G4)
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Using Eqs. (G4) we have

lim�→0C
(m)
I = e−akam

m!
, (G5)

and as ki1 ki2 · · · kim → km in the same limit, we have from Eq. (G3),

f0,X (t ) = kbX

(b + 1)X

[
X−1∑
m=0

1

m!

(
X − 1

m

)(
kt

b + 1

)m
]

e− kbt
b+1 . (G6)

The term inside the square bracket is a confluent hypergeometric function 1F1, and hence

f0,X (t ) = kbX

(b + 1)X 1F1

[
1 − X, 1,− kt

b + 1

]
e− kbt

b+1 . (G7)

APPENDIX H: DISCUSSION ON PROOF OF THE IDENTITIES IN EQS. (G4)

A proof can be give for a special case first. Let the set I be a simple set, I = {0, 1, 2, ..., m} and 1 � j � m.
It is easy to see that

1∏
p∈I,p�= j ( j − p)

= (−1)m− j

j!(m − j)!
. (H1)

Using Eq. (H1),

im∑
j=0,i1,i2,···

1∏
p∈I,p�= j ( j − p)

= 1∏
p∈I,p�=0(−p)

+
m∑

j=1

1∏
p∈I ( j − p)

= (−1)m

m!
+

m∑
j=1

(−1)m− j

j!(m − j)!

= (−1)m

m!

m∑
j=0

(−1) j

(
m

j

)

= (−1)m

m!
(1 − 1)m

= 0.

Hence, the first part of Eq. (G4) is proved, for the simple case. The second part is

im∑
j=0,i1,i2,···

jl∏
p∈I,p�= j ( j − p)

=
m∑

j=1

jl∏
p∈I,p�= j ( j − p)

= 1

m!

m∑
j=1

jl (−1)m− j

(
m

j

)

= 1

m!

m−1∑
i=0

(m − i)l (−1)i

(
m

i

)

= 1

m!
S(l, m).

S(l, m) is known to be the number of surjective maps from a set with l elements to another set with m elements. Only when
l is equal to m, surjective mapping is possible. The number of surjective maps is then equal to the number of ways of putting m
distinct balls into m distinct boxes (no box being empty) =m!δlm. Hence, 1

m! S(l, m) = δlm and the identity for the special case is
proved.

For the general case, we conjecture that the identity is valid for any random set of m positive integers. Although we cannot
give a proof, we computationally checked it using Mathematica. The set of integers I = {0, i1, i2, im} were chosen randomly
1000 times. For every such set, the identity was verified. We varied m such that 1 � m � 100. In that way, the identity was
checked 1000 × 100 = 105 times, for the general case. A formal proof would be nice to find in future.
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