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Stochastic protein accumulation up to some concentration threshold sets the timing of many cellular
physiological processes. Here we obtain the exact distribution of first threshold crossing times of protein
concentration, in either Laplace or time domain, and its associated cumulants: mean, variance, and
skewness. The distribution is asymmetric, and its skewness nonmonotonically varies with the threshold.
We study lysis times of E. coli cells for holin gene mutants of bacteriophage-λ and find a good match with
theory. Mutants requiring higher holin thresholds show more skewed lysis time distributions as predicted.
The theory also predicts a linear relationship between infection delay time and host doubling time for lytic
viruses, that has recently been experimentally observed.
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Molecular biological processes associated with changes
in cell state are controlled by changes in gene expression, a
complex stochastic process involving transcription of a
gene into a ribonucleic acid (RNA) molecule and its
subsequent translation into a protein. Intrinsic noise in
transcription and translation leads to a stochastically vary-
ing abundance of messenger RNA (mRNA) and proteins
within cells, even when genetically identical [1–3].
Experimental studies have directly probed fluctuations of
protein levels across cells [4,5]. Theoretical models assum-
ing specific promoter configurations have solved for the
coefficient of variance CV2 (variance divided by square of
mean) of the mRNA and protein numbers, as well as their
full steady-state distributions [6–10]. Stochastic gene
expression has been shown to be a fundamental property
of living cells, affecting critical physiological processes of
biological and biomedical importance [6,11].
The dynamics of downstream processes governed by the

synthesis of a protein requires its accumulation to some
minimum concentration threshold, e.g., transcription fac-
tors with sigmoidal Hill kinetics [12]. In such cases the
timing of the downstream process is governed by the time
at which the threshold concentration is reached for the first
time, i.e., the First Passage Time (FPT) [13,14] of the
stochastic gene expression process. The most well-studied
example of timing control by stochastic protein accumu-
lation is probably lysis of lambda phage-infected E. coli.
Here the protein holin self-assembles on the bacterial
membrane and punctures it after its concentration crosses
a threshold, causing the cell to ultimately lyse or burst and
release the newly formed viral particles [15,16]. The viral
burst size of lambda phage-infected E. coli is known to

have a broad distribution [17]. While previous work has
studied the timing of lysis and its relation with viral fitness
[16,18,19] and the lysis-lysogeny decision [20], later
studies have highlighted the distribution of lysis timing
and demonstrated connections with the first passage time
[21–24]. Fluctuations in lysis times lead to variations in
viral burst sizes affecting both viral population fitness [25]
as well as the health of the host. Genetic mutations of holin
have been shown to regulate the stochasticity in lysis times
in the λ variants [21,26,27].
First passage timing mechanisms based on protein

accumulation may be quite common, from eukaryotic
organisms to single cells. Recent work suggests that
neuroblast migration timing in C. elegans development
is controlled by the accumulation of mig1 [28]. Cell
division in E. coli has similarly been shown to be controlled
by FtsZ expression [29]. Other examples include cell
survival during prolonged drug exposure [30] and regula-
tion of cell size in yeast cells by cdr2 proteins [31]. First
passage times are also relevant for other phenomena such as
RNA polymerase backtracking and cleavage [32], first
binding of proteins to sites on DNA [33], capture of
kinetochores [34], and more abstractly, estimating charac-
teristics of energy landscapes [35]. Statistics of first passage
times have been of great theoretical interest, and obtaining
analytical expressions for their distribution (FPTD) is
generally quite challenging [36]. In previous work we
derived analytical expressions for the FPTD of the absolute
number of any molecule generated through geometrically
distributed burst kinetics to reach a threshold [37].
However, in living cells the cell volume is never constant,
and for many biological processes the more appropriate
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variable is not the absolute number but the concentration of
proteins. For example, the variation of noise in lysis times
of λ-phage mutants could be explained only assuming a
concentration threshold of holins [27], and the concen-
tration threshold of cdr2 proteins plays a role in the cell
division of budding yeast [31].
Previously only approximate formulae existed for the

moments of the concentration threshold crossing FPTD
[23,27], and the distribution itself was unknown. Here we
derive exact analytical expressions (as well as systematic
approximations) for the FPTD of molecular concentrations
and its moments, and apply them to experimental data on
the distribution of lysis times. In the latter part of this text,
we show that the threshold phenomenon can explain
something out of the box: the experimentally seen linear
relationship between mean lysis time and the doubling time
of the host cell, after an infection.
A theoretical framework for the stochastic kinetics of

protein synthesis has already been developed under the
assumptions of short-lived mRNA and long-lived proteins.
The exact steady-state distributions of the discrete protein
number (n) has been derived previously [8] and was shown
to follow a negative binomial distribution, while the
continuous protein concentration c ¼ n=V (with V being
cellular volume) was shown to follow the Gamma distri-
bution [7,38]. While the forward continuous master equa-
tion was suitable to study the protein concentration c [7],
the corresponding backward master equation [39] is more
convenient for calculating the statistics of the FPT to reach
the threshold concentration X. Given an initial c ¼ x < X,
the survival probability SðX; x; tÞ that c survives reaching
the threshold X through time t, satisfies the backward
continuous master equation:

∂SðX; x; tÞ
∂t ¼ k

Z
X

x
dx0½νðx0 − xÞ − δðx0 − xÞ�SðX; x0; tÞ

− γx
∂SðX; x; tÞ

∂x : ð1Þ

Here the initial condition is SðX; x; 0Þ ¼ 1 and the boun-
dary condition SðX; x ¼ X; tÞ ¼ 0; the rate of protein
production kν is assumed to be proportional to the
mRNA production rate k and the experimentally known
protein burst size distribution νðx − x0Þ ¼ ð1=bÞe−ðx−x0Þ=b
with mean burst concentration b [5,38]. The rate of decay
of the protein per unit concentration is γ which expresses
the joint effect of protein degradation and cell growth. The
FPTD for the first threshold crossing (x ≥ X) in time t is
obtained from SðX; x; tÞ as fðX; x; tÞ ¼ −∂SðX; x; tÞ=∂t.
To solve Eq. (1) we convert the integro-differential equa-
tion into a partial differential equation and take the Laplace
transform, S̃ðX; x; sÞ ¼ R∞

0 dte−stSðX; x; tÞ, leading to a
differential equation for S̃ as a function of the (scaled)
initial concentration x̃ ¼ x=b (details in Sec. S2 of the
Supplemental Material [40]):

x̃
∂2S̃ðX; x̃; sÞ

∂x̃2 þ
�
kþ γ þ s

γ
− x̃

� ∂S̃ðX; x̃; sÞ
∂x̃

−
s
γ
S̃ðX; x̃; sÞ ¼ −

1

γ
: ð2Þ

The homogeneous part of the above equation is a confluent
hypergeometric equation [43]. Using the boundary
condition and the fact that S̃ is finite as x → 0, the solution
in terms of the confluent hypergeometric function

1F1ða; c; x̃Þ [43] is as follows (see Sec. S3 of the
Supplemental Material [40]):

S̃ðX; x; sÞ ¼ 1

s

�
1 − 1F1½sγ ; 1þ kþs

γ ; xb�
1F1½sγ ; 1þ kþs

γ ; Xb�
�
: ð3Þ

Since f̃ðX; x; sÞ ¼ 1 − sS̃ðX; x; sÞ, the desired exact FPTD
in Laplace space for any γ and any initial protein concen-
tration x > 0 is

f̃ðX; x; sÞjγ≠0 ¼ 1F1½sγ ; 1þ kþs
γ ; xb�

1F1½sγ ; 1þ kþs
γ ; Xb�

: ð4Þ

The above calculation (for x > 0) is applicable to the
special case x → 0 of interest, as the initial protein level is
zero at the beginning of the translation. The case of exactly
x ¼ 0 requires a separate treatment, but is numerically
identical to x → 0 as expected (details in Sec. S3 of the
Supplemental Material [40]).
For vanishing decay constant (γ → 0), Eq. (4) simplifies

to f̃ðX; x; sÞ ¼ exp f−½ðX − xÞs=bðkþ sÞ�g which is
analytically invertible and gives the exact FPTD in
the time domain (see Sec. S4 of the Supplemental
Material [40]):

fðX; x; tÞjγ¼0 ¼ e−
ðX−xÞ

b e−kt
X∞
n¼1

ðX − xÞn
n!ðn − 1Þ!

�
k
b

�
n
tn−1: ð5Þ

Note that for γ ¼ 0 the result is a function of the difference
between the threshold and initial concentrations (X − x), as
expected from the translational symmetry in Eq. (1).
In general for γ ≠ 0, Eq. (4) may be inverted numerically

usingMathematica [44]. Finallywe can also derive the exact
expression of the first few moments, which are useful when
comparing with empirical distributions. From Eq. (4), the
nth moment htni¼ ½∂nf̃ðX;x;sÞ=∂sn�js→0. Defining gðsÞ ¼
1F1½ðs=γÞ; 1þ fðkþ sÞ=γg; ðx=bÞ�, hðsÞ ¼ 1F1½ðs=γÞ; 1þ
fðkþ sÞ=γg; ðX=bÞ�, gðmÞð0Þ ¼ ½∂mgðsÞ=∂sm�js→0 and
hðmÞð0Þ ¼ ½∂mhðsÞ=∂sm�js→0, the first three moments are
derived analytically exactly (see Sec. S5 of the Supplemental
Material [40]):

hti ¼ hð1Þð0Þ − gð1Þð0Þ ð6Þ
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ht2i ¼ 2hð1Þð0Þðhð1Þð0Þ − gð1Þð0ÞÞ þ gð2Þð0Þ − hð2Þð0Þ ð7Þ

ht3i ¼ 6ðhð1Þð0ÞÞ3 þ gð1Þð0Þð3hð2Þð0Þ − 6ðhð1Þð0ÞÞ2Þ
þ 3hð1Þð0Þðgð2Þð0Þ − 2hð2Þð0ÞÞ þ hð3Þð0Þ − gð3Þð0Þ:

ð8Þ

Note that CV2 ¼ ðht2i=hti2Þ − 1 and the skewness ¼
½ðht3i − 3ht2ihti þ 2hti3Þ=ðht2i − hti2Þ3=2� follow from the
above expressions.
Just like the distribution in Eq. (4), the quantities gð1Þð0Þ,

gð2Þð0Þ, gð3Þð0Þ, hð1Þð0Þ, hð2Þð0Þ, and hð3Þð0Þ (see Sec. S5 of
the Supplemental Material [40]) depend on the four
parameters ðx=bÞ, k, γ and (X=b).
Statistics of Lysis Times.—In order to match our results

with experimental data, we used the raw data of Ref. [27].
Briefly, site-directed mutagenesis was used to generate a
library of mutations in the S105 holin allele, each of which
differed from the parent allele by one or two amino acid
substitutions. These mutated sequences were then used to
generate a library of lysogenic lambda phages, each carrying
a slightly different holin gene. These viruses were used to
infect E. coli cells, and lysis was thermally induced and
measured at the single cell level for 91–174 cells per strain.
We estimate some required parameters as follows. Holins

degrade slowly; hence the decay of x is mostly due to cell
growth, with doubling time of roughly 40 min. Hence we
choose γ ¼ lnð2Þ=40 min−1. We choose x=b ¼ 0.01 to
represent x → 0, the vanishingly small initial protein
concentration. Next we numerically eliminate the param-
eter (X=b) between the expressions of CV2 and mean FPT
hti (see discussion in Sec. S7 in the Supplemental Material
[40]), such that the theoretical curve of CV2 versus hti gets
fixed by just one fitting parameter, i.e., k. The best fit
of the theory to the experimental data for the 20 mutants is
shown in Fig. 1, and yields the fitted value k ¼ 4.5 min−1.

The CV2 curve has a minimum at mean FPT around
tm ∼ 40 min.
While we expect the mutants to have roughly the same

(x=b), k, and γ values (as given above), their mean FTP
differs as does the threshold (X=b). We fix (X=b) for every
mutant by matching the theoretical mean from Eq. (6) with
the experimental average from the data, for that mutant.
Then we obtain the full theoretical FPTD [by inverting
Eq. (4) [44] ] and plot against the experimental distribution
to check how well they match. This is shown in Fig. 2 for
two cases—mutant-1 (JD405) and mutant-2 (JD426) (see
Sec. S1 of the Supplemental Material [40] and [27]) with
the mean FPT smaller and larger than tm respectively. See
plots for the remaining 18 mutants in the Supplemental
Material [40] (Fig. 3).
The data and theoretical curves (in Fig. 2) both suggest

that FPTD is non-Gaussian and is skewed to the right. We
explicitly study the variation of the skewness of FPTD for
the mutants in Fig. 3—it shows a nonmonotonic behavior
just like the CV2 with a minimum around ∼35 min close to
tm mentioned above. Thus mutants with increasingly larger
mean FPT have increasingly asymmetric FPTD. Note that
the distributions have asymptotic (large t) exponential tails
∼ expð−t=τcÞ, with characteristic times τc being related to
the smallest pole s� ¼ −1=τc of f̃ðX; x; sÞ in Eq. (4). A plot
of τc=hti against the mean FPT shows a similar non-
monotonic curve as CV2 and skewness (see Sec. S8 in the
Supplemental Material [40]).
Our results lead to an interesting prediction regarding the

dependence of the mean lysis time on the cell doubling
time. We showed above that fluctuations are minimal
around a mean time tm, for a given cellular size doubling
time lnð2Þ=γ. This value tm for any bacterial cell however
may vary, and depends upon experimental conditions
which may change the cell doubling time. From the theory,
we numerically calculate the tm at minimum CV2 and find
it to be linearly dependent on the doubling time lnð2Þ=γ
(see Fig. 4). We also show analytically that tm ≈
−ð1=γÞ lnð1 − fÞ where the fraction f is a ratio between
an “optimal threshold” Xopt and the steady-state concen-
tration css ¼ kb=γ (see Sec. S9 in the Supplemental

FIG. 1. CV2 against hti for 20 mutants (symbols) and exact
theory (solid line) with best fit parameter k ¼ 4.5 min−1. Error
bars are 90% confidence intervals, obtained after bootstrapping
1000 replicates (see Sec. S6 of the Supplemental Material [40]).
Here γ ¼ lnð2Þ=40 min−1 and ðx=bÞ ¼ 0.01.

(a) (b)

FIG. 2. The FPTD from experiment and theory for (a) mutant-1
with hti ¼ 17.1 min and (b) mutant-2 with hti ¼ 140.3 min.
Note tm ∼ 40 min.
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Material [40]). Thus, under the plausible assumption that
wild-type viruses have optimal noise characteristics, the
mean lysis time of lambda phage under different host cell
doubling times should be linearly related with cell doubling
time. Interestingly, for a wide variety of viruses, a linear
correlation between infection delay time and host doubling
time has been reported recently [45].
Approximate FPTD.—Systematic approximations are

useful since often they yield simpler expressions of
practical use. Previous approximations for moments of
the FPTD [23,27,46] were based on ad hoc assumptions.
We develop a systematic approximate theory which
matches the exact results up to second order in fluctuations
as follows. Under the assumption that the burst sizes are
small, the bursty term in Eq. (1) may be smoothed through
the Kramers-Moyal expansion [39] (see Sec. S10 in the
Supplemental Material [40]). Retaining terms up to second
order, we obtain the following backward Fokker-Planck
equation, valid for x < kb=γ:

∂SðX;x;tÞ
∂t ¼ðkb−γxÞ∂SðX;x;tÞ∂x þkb2

∂2SðX;x;tÞ
∂x2 : ð9Þ

The forward Fokker-Planck equation (Sec. S10 in the
Supplemental Material [40]) which is the counterpart of
the above backward Eq. (9), is the corresponding Kramer-
Moyal approximation to the exact theory developed in
Ref. [7]. That forward equation, under Ito convention, is
related to the following Langevin equation [39] (see Sec.
S10 in the Supplemental Material [40] which includes
Ref. [41]):

dc
dt0

¼ kb − γcþ ηðt0Þ ð10Þ

where t0 denotes the forward evolving time, and is to be
distinguished from the “backward” time t. Note ηðt0Þ is a
Gaussian noise with hηðt0Þi ¼ 0 and hηðt01Þηðt02Þi ¼
2Dδðt01 − t02Þ, and the diffusion constant needs to be
identified as D ¼ kb2. The simple Langevin equation with
production, decay, and noise terms has appeared in earlier
theories, e.g., of FPT for mRNA kinetics [47]—yet its exact
FPTD was not known. We note that Eq. (9) corresponding
to the Langevin Eq. (10), can be exactly solved to obtain the
FPTD in Laplace space (see Sec. S11 in the Supplemental
Material [40]):

f̃ðX; x; sÞjapproxγ≠0 ¼
U½ s

2γ ;
1
2
; ðbk−γxÞ

2

2b2γk �
U½ s

2γ ;
1
2
; ðbk−γXÞ

2

2b2γk �
ð11Þ

Here, U denotes Tricomi’s confluent hypergeometric func-
tion related to 1F1 (see Sec. S11 in the Supplemental
Material [40]). From Eq. (11) the theoretical CV2 and
skewness may be obtained just as we did for the exact
theory [Eq. (4)]—see Sec. S12 of the Supplemental
Material [40] which includes Ref. [42].
The curves of CV2 and skewness from the approximate

FPTD [Eq. (11)] are plotted in Fig. 5 along with those from
the exact theory [using Eqs. (7), (8)], and the ones from the
Langevin simulations obtained using Eq. (10). The exact
theory matches the approximate theory and simulations for
CV2 perfectly, but deviates a bit from those in the case of
skewness, which is expected since in the Kramers-Moyal
approximation we ignored third order moments which
contribute to the skewness.
We derived analytically exact results for the FPTD for

protein concentrations by solving the backward master
equation. We showed that the FPTD and its moments match
those observed for lysis times in lambda phage, reinforcing
the hypothesis that the lysis time is governed by a protein
accumulation-dependent FPTD.We developed a systematic
approximation for the FPTD and derived analytical results
for the approximate FPTD. The results are general and can
be applied to fit lysis time distributions for all lytic phages
including lambda phage, as well as other protein threshold
crossing processes. The distributions themselves are non-
Gaussian with exponential tails and may have a high

FIG. 4. Optimal mean FPT versus cell doubling time. As
discussed in the text, the slope of the green line is equal to
− lnð1 − fÞ= lnð2Þ with f ¼ 0.55.

FIG. 3. Skewness against hti for 20 mutants (symbols) and
exact theory (solid line) with k ¼ 4.5 min−1, x=b ¼ 0.01, and
γ ¼ lnð2Þ=40 min−1. Error bars are determined in a similar way
as in Fig. 1.
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skewness, indicating asymmetry that may be significant for
some lytic phages. Our predictions may be checked using
Gillespie simulations of protein numbers divided by time
varying cellular volume [7] or using more exact time-
dependent rates [48,49].
We showed that the FPT theory predicts that some

mutants will have optimal noise characteristics, i.e., min-
imal CVand skewness, which is borne out by the data. The
nonmonotonic relation between lysis time and noise
suggests that lysis time may be selected during evolution
to minimize noise, as suggested by the observation that the
wild-type lambda phage has the lowest level of noise in
lysis times [24].
We also predicted an interesting linear relationship

between the optimal mean lysis time and the host cell
doubling time. This result may be quite general for lytic
viruses, since viral escape from an infected cell is typically
characterized by a delay that could be a sign of a threshold
phenomena. It is thus intriguing that for a wide variety of
viruses, the initial burst timing is linearly correlated with
the cell doubling time [45] across many different types of
hosts and lysis times ranging from minutes to a week. Lytic
phages are also important in phage therapy, where bacter-
iophages are used to kill pathogenic bacteria [50], and these
results on lysis timing may have useful applications for that
novel area of medicine.
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Notations used for parameters in the main text:

Notation Description

k
The rate of transcription of a gene into
mRNA

b Mean size of protein burst concentration

γ The rate of decay of protein concentration

X Protein concentration threshold

S1: Experimental details:

Full details of the experimental methods can be found in Ref. [1]. Here we include a brief
description in non-specialist language for completeness. Firstly, plasmids were constructed with
a mutated version of the holin gene using site directed mutagenesis, by standard molecular
biology techniques. These plasmids were then used to transform E. coli lysogens, i.e. cells already
harboring a lambda-phage (MC4100 (λ cI857 S::Cam) strain) genome. Following induction of
the lytic cycle in these lysogens, the mutated holin gene carried by the plasmid is incorporated
(via recombination) into the genomes of some of the phages that emerge after cell lysis . The
mutated phages were then used to lysogenize wild-type E. coli cells (MC4100 strain), resulting in
a collection of lysogenic strains harboring phage genomes with mutations in the holin gene. The
phage genome in these lysogens (prophage) expresses a temperature-sensitive cI857 repressor,
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which is required to maintain the lysogenic state. The lysogen enters the lytic cycle when the
cI857 repressor is inactivated following a heat shock. Lysis time was measured as the time taken
for a cell to lyse under a microscope starting from the time of application of a heat shock of 42◦C.
Measurements were carried out with the help of a microscope-mounted, temperature controlled
perfusion chamber. Please refer to Ref. [1] for a complete list of the mutant viruses and details
of the mutations introduced.

S2: The continuous Backward Master equation for Survival prob-
ability:

Let S(X,x, t) denote the Survival probability of the gene expression process such that the protein
concentration stays below threshold concentration X at time t, starting with concentration x
at t = 0. Since the terminal state (on first passage) of such a process is known (i.e. X), the
equation governing S is developed backward in time t and initial position x, and the general
procedure to construct it is well-known [2]. In this specific problem, between a “ past time
t+ δt” to a “future time t” the concentration could have jumped from x to x′ with probability
kν(x′−x)δt due to bursty protein production, where ν(x′−x) = (1/b)e−(x′−x)/b is the probability
distribution of the burst size x′ − x. Similarly x could have decayed to x− δx with probability
xγδt. There is a remaining likelihood that the concentration does not change and stays x.
Putting these information together one obtains the stochastic Master equation. Note that while
the protein production is a jump process, the decay is a smooth process [2], and we are dealing
with a continuous variable x. Consequently the continuous integro-differential backward Master
equation (in the limit δt, δx = 0) for the Survival probability is:

∂S(X,x, t)

∂t
= k

∫ X

x
dx′[ν(x′ − x)− δ(x′ − x)]S(X,x′, t)− γx∂S(X,x, t)

∂x
(1)

Note that this is the exact counterpart of the forward Master equation of the process developed
in [3] for the probability density p(c, t′) of the protein concentration c(t′) at time t′:

∂p(c, t′)

∂t′
= k

∫ c

0
dc′[ν(c− c′)− δ(c− c′)]p(c′, t′) + γ

∂[cp(c, t′)]

∂c
(2)

The equation (1) is to be solved for the initial condition S(X,x, 0) = 1 and the absorbing
boundary condition S(X,x = X, t) = 0. We first convert the integro-differential Eq. (1) to a
pure differential equation by doing the following mathematical manipulations. Substituting ν
we have:

∂S(X,x, t)

∂t
= k

∫ X

x
dx′

1

b
e−

x′−x
b S(X,x′, t)− kS(X,x, t)− γx∂S(X,x, t)

∂x

which on integration by parts gives

∂S(X,x, t)

∂t
= −kS(X,x′, t)e−

x′−x
b

∣∣∣∣x′=X
x′=x

+k

∫ X

x
dx′

∂S(X,x′, t)

∂x′
e−

x′−x
b −kS(X,x, t)−γx∂S(X,x, t)

∂x
.
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Using the boundary condition, S(X,X, t) = 0, in the first term,

∂S(X,x, t)

∂t
= kS(X,x, t) + ke

x
b

∫ X

x
dx′

∂S(X,x′, t)

∂x′
e−

x′
b − kS(X,x, t)− γx∂S(X,x, t)

∂x

= ke
x
b

∫ X

x
dx′

∂S(X,x′, t)

∂x′
e−

x′
b − γx∂S(X,x, t)

∂x

Multiplying by e−x/b, on both sides,

e−x/b
∂S(X,x, t)

∂t
= k

∫ X

x
dx′

∂S(X,x′, t)

∂x′
e−

x′
b − e−x/bγx∂S(X,x, t)

∂x

Then we take derivative with respect to x, on both sides, and get

−1

b
e−x/b

∂S(X,x, t)

∂t
+ e−x/b ∂

2S(X,x,t)
∂x∂t = −ke−x/b ∂S(X,x,t)

∂x − γ
[
e−x/b ∂S(X,x,t)

∂x

+x
(
−1
be
−x/b ∂S(X,x,t)

∂x + e−x/b ∂
2S(X,x,t)
∂x2

)]
which simplifies to give

− 1

b

∂S(X,x, t)

∂t
+
∂2S(X,x, t)

∂x∂t
=
(
−k − γ +

γx

b

) ∂S(X,x, t)

∂x
− γx∂

2S(X,x, t)

∂x2
(3)

We define the Laplace transform S̃(X,x, s) =
∫∞

0 dte−stS(X,x, t), and take Laplace transform
of the above equation in time t to get,

− 1

b
(sS̃(X,x, s)− 1) + s

∂S̃(X,x, s)

∂x
=
(
−k − γ +

γx

b

) ∂S̃(X,x, s)

∂x
− γx∂

2S̃(X,x, s)

∂x2

which simplifies to

x
∂2S̃(X,x, s)

∂x2
+

(
k + γ + s

γ
− x

b

)
∂S̃(X,x, s)

∂x
− s

bγ
S̃(X,x, s) = − 1

bγ

On doing the scale transformation x = x̃b, we get an ordinary differential equation for S̃:

x̃
∂2S̃(X, x̃, s)

∂x̃2
+

(
k + γ + s

γ
− x̃
)
∂S̃(X, x̃, s)

∂x̃
− s

γ
S̃(X, x̃, s) = −1

γ
(4)

S3: The exact first passage time distribution (FPTD) in the
Laplace domain:

The main object of our interest is the first passage time distribution f(X,x, t) to cross the
threshold X at time t, particularly starting with zero protein concentration (i.e. x = 0). This is
related to the Survival probability as f(X,x, t) = − ∂

∂tS(X,x, t). In Laplace space this relation-

ship is f̃(X,x, s) = 1−sS̃(X,x, s). Thus we need to solve for S̃ from Eq. (4) to proceed further.
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The homogeneous part of Eq. (4) is a Confluent Hypergeometric equation, and a particular
solution of the inhomogeneous equation is 1/s [4]. The general solution is thus:

S̃(X,x, s) =
1

s
+A1F1[

s

γ
, 1 +

k + s

γ
,
x

b
] +B

(x
b

)− k+s
γ

1F1[−k
γ
, 1− k + s

γ
,
x

b
] (5)

where A and B are constants to be determined and 1F1 denotes the Confluent Hypergeometric
function of the first kind, 1F1[a, b, z] =

∑∞
n=0

an
bn

zn

n! , with an and bn being the Pochhammer
symbols: an = a(a+ 1)(a+ 2)... (a+ n− 1) and bn = b(b+ 1)(b+ 2)... (b+ n− 1).

The solution is supposed to be valid for x = 0. In that limit, the third term in Eq. (5)

diverges, because of the factor x
− k+s

γ . So, we set B = 0.

S̃(X,x, s) =
1

s
+A1F1[

s

γ
, 1 +

k + s

γ
,
x

b
]

Furthermore using the boundary condition, S̃(X,x = X, s) = 0, we get the value of A to be

A = − 1

s1F1[ sγ , 1 + k+s
γ , Xb ]

Thus survival probability in Laplace space is

S̃(X,x, s)

∣∣∣∣
x 6=0

=
1

s

(
1−

1F1[ sγ , 1 + k+s
γ , xb ]

1F1[ sγ , 1 + k+s
γ , Xb ]

)
(6)

and using the relation f̃(X,x, s) = 1− sS̃(X,x, s), we finally get the central result of this work,
namely the FPTD in Laplace space:

f̃(X,x, s)

∣∣∣∣
x 6=0

=
1F1[ sγ , 1 + k+s

γ , xb ]

1F1[ sγ , 1 + k+s
γ , Xb ]

(7)

Expressions (6) and (7) are valid for any initial protein concentration x > 0. The case of x = 0
requires a separate treatment.

Solution for the case of x = 0:

A separate solution for this case is necessary due to the following reason. Consider the case of
x = 0 and X tending to zero. While S(X = 0+, 0, t) is something finite, S(X = 0+, x = X, t) = 0
(boundary condition). Thus the function S abruptly changes like a step function and hence the
derivative of S(X,x, t) with respect to x will be a Dirac delta function. That would mean
that various quantities in the differential Eq. (3) will become singular objects. So, we cannot
proceed through this differential equation method for the case x = 0. But instead we may now
go back to the integral Eq. (1) and study this case separately. In particular we know that, if
the boundary X goes very close to 0, we expect the survival probability S(X = 0, 0, t) = e−kt

and the FPTD to be ke−kt. That is because a single jump (with rate k), will lead to crossing
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of the infinitesimal threshold. This means that in such a limit the Laplace transforms of the
Survival probability and the FPTD are 1/(k + s) and k/(k + s) respectively. We would see
below that the solution of the integro-differential equation for x = 0 is perfectly consistent with
this expectation. f̃(X,x = 0, s) Putting x = 0 in Eq. (1) and then taking Laplace transform
corresponding to t, we get:

(s+ k)S̃(X, 0, s) =1 +
k

b

∫ X

0
dx′e−

x′
b S̃(X,x′, s)

Note that S̃(X,x′ > 0, s) is given by the solution Eq. (6), and hence

(s+ k)S̃(X, 0, s) =1 +
k

b

∫ X

0
dx′e−

x′
b

[
1

s

(
1−

1F1[ sγ , 1 + k+s
γ , x

′

b ]

1F1[ sγ , 1 + k+s
γ , Xb ]

)]

=1 +
k

s
(1− e−

X
b )− k

1F1[ sγ , 1 + k+s
γ , Xb ]bs

∞∑
n=0

(
s
γ

)
n(

1 + s+k
γ

)
n

1

n!

∫ X

0
dx′

e−
x′
b xn

bn

=1 +
k

s
(1− e−

X
b )− k

1F1[ sγ , 1 + k+s
γ , Xb ]bs

∞∑
n=0

(
s
γ

)
n(

1 + s+k
γ

)
n

Γ
(
n+ 1, Xb

)
n!

Note the use of the Pochhammer symbols. Thus Survival probability

S̃(X, 0, s) =
1

s

1− k

k + s
e−

X
b − k

1F1[ sγ , 1 + k+s
γ , Xb ](s+ k)

∞∑
n=0

(
s
γ

)
n(

1 + s+k
γ

)
n

Γ
(
n+ 1, Xb

)
n!


and using the relation f̃(X, 0, s) = 1− sS̃(X, 0, s), we get,

f̃(X, 0, s) =
k

k + s

e−Xb +
1

1F1[ sγ , 1 + k+s
γ , Xb ]

∞∑
n=0

(
s
γ

)
n(

1 + s+k
γ

)
n

Γ
(
n+ 1, Xb

)
n!

 (8)

We note that indeed f̃(X = 0+, 0, s) = k/(k + s) as expected and discussed above.
Although the functional forms of f̃(X,x > 0, s) and f̃(X,x = 0, s) are different (in Eqs.

(7) and (8) respectively), as x → 0, f̃(X,x → 0, s) smoothly coincides with f̃(X,x = 0, s).

We show this numerically, by plotting the ratio f̃(X,x>0,s)

f̃(X,x=0,s)
, as a function of x (see Fig. (1)

below). Thus for all practical purposes, the function f̃(X,x → 0, s) represents well the limit
of vanishing protein concentration. Moreover since the function f̃(X,x > 0, s) in Eqs. (7)
is simpler looking compared to f̃(X,x = 0, s), we have subsequently used the expression of
f̃(X,x > 0, s) everywhere in the manuscript while discussing vanishingly small initial protein
concentration.
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s = 0.1 min-1

s = 2 min-1

10
-4
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b

f˜
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s

f˜
X
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0
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s

Figure 1. For parameter values k = 4.5 min−1, γ = ln(2)/40 min−1 and X/b = 10, the ratio
f̃(X,x,s)

f̃(X,0,s)
is plotted as a function of x/b, for two different values of the Laplace variable:

s = 0.1 min−1 and s = 2 min−1. In both the cases the ratio approaches 1 smoothly as x = 0.

S4: The exact FPTD in the time domain for vanishing degra-
dation and very large cell-doubling times (γ = 0):

By writing explicitly the 1F1 functions, we have from Eq. (7),

f̃(X,x > 0, s) =

∞∑
n=0

(
s
γ

)
n(

1 + k+s
γ

)
n

1

n!

(x
b

)n
∞∑
n=0

(
s
γ

)
n(

1 + k+s
γ

)
n

1

n!

(
X

b

)n

which for γ = 0,

f̃(X,x > 0, s) =

∞∑
n=0

(
s

k + s

)n 1

n!

(x
b

)n
∞∑
n=0

(
s

k + s

)n 1

n!

(
X

b

)n
=e
− (X−x)s
b(k+s)

=e−
(X−x)
b e

k(X−x)
b(s+k)

=e−
(X−x)
b

∞∑
n=0

[
k(X − x)

b(s+ k)

]n 1

n!
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Taking an inverse Laplace transform of the above expression we get,

f(X,x > 0, t)

∣∣∣∣
γ=0

= e−
(X−x)
b

[ ∞∑
n=1

1

n! (n− 1)!

(
(X − x)k

b

)n
tn−1

]
e−kt (9)

S5: Moments and cumulants:

For convenience of subsequent algebra, we rewrite Eq. (7) as,

f̃(X,x > 0, s)

∣∣∣∣
γ 6=0

=
g(s)

h(s)
(10)

where, g(s) = 1F1[ sγ , 1 + k+s
γ , xb ] =

∞∑
n=0

( sγ )n

(1 + k+s
γ )n

1

n!

(x
b

)n
and h(s) = 1F1[ sγ , 1 + k+s

γ , Xb ] =

∞∑
n=0

( sγ )n

(1 + k+s
γ )n

1

n!

(
X

b

)n
.

One of the important use of obtaining FPTD in the Laplace space is that the moments of
any finite order may be calculated as derivatives of the Laplace transform at s = 0. Namely, the
mth moment 〈tm〉 = (−1)m dm

dsm f̃(X,x, s)|s=0. In this section, we calculate the first 3 moments.

The mean first passage time 〈t〉 (first moment):

We see from Eq. (10) that

〈t〉 = −∂f̃(X,x, s)

∂s

∣∣∣∣
s=0

= h(1)(0)− g(1)(0) (11)

since g(0) = h(0) = 1, where g(n)(0) = ∂ng(s)
∂sn

∣∣∣∣
s=0

and h(n)(0) = ∂nh(s)
∂sn

∣∣∣∣
s=0

. We have

h(1)(s) =
∞∑
n=0

1

n!

(
X

b

)n ∂

∂s


(
s
γ

)
n(

1 + k+s
γ

)
n


and since for any function g(z), ∂g(z)

∂z = g(z)∂ln(g(z))
∂z , we have

h(1)(s) =
1

γ

∞∑
n=1

1

n!

(
X

b

)n (
s
γ

)
n(

1 + k+s
γ

)
n

n−1∑
m=0

[
1

s
γ +m

− 1

1 + k+s
γ +m

]
(12)

In the limit of s = 0, (s/γ)n = 0. Collecting the surviving terms we have

h(1)(0) =
1

γ

∞∑
n=1

1

n

(
X

b

)n 1(
1 + k

γ

)
n

(13)
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A similar calculation gives

g(1)(0) =
1

γ

∞∑
n=1

1

n

(x
b

)n 1(
1 + k

γ

)
n

(14)

and thus finally

〈t〉 =
1

γ

∞∑
n=1

1

n

1(
1 + k

γ

)
n

[(
X

b

)n
−
(x
b

)n]
(15)

The second moment 〈t2〉:

Proceeding as above, from Eq. (10),

〈t2〉 =
∂2f̃(X,x, s)

∂s2

∣∣∣∣
s=0

= g(2)(0)− h(2)(0) + 2h(1)(0)
(
h(1)(0)− g(1)(0)

)
(16)

where h(1)(0) and g(1)(0) is already evaluated (Eqs. 13 and 14). So, we now need to evaluate
h(2)(0) and g(2)(0). Differentiating Eq. (12) with respect to s:

h(2)(s) =
1

γ2

∞∑
n=1

1

n!

(
X

b

)n (
s
γ

)
n(

1 + k+s
γ

)
n

{n−1∑
m=0

[
1

s
γ +m

− 1

1 + k+s
γ +m

]}2

+

n−1∑
m=0

[
− 1

( sγ +m)2
+

1

(1 + k+s
γ +m)2

])
(17)

Since for s = 0, (s/γ)n = 0, the non-zero terms yield

h(2)(0) =
1

γ2

∞∑
n=1

1

n

(
X

b

)n 2(
1 + k

γ

)
n

[
− 1

1 + k
γ

+

n−1∑
m=1

1 + k
γ

m(1 +m+ k
γ )

]
(18)

and similarly,

g(2)(0) =
1

γ2

∞∑
n=1

1

n

(x
b

)n 2(
1 + k

γ

)
n

[
− 1

1 + k
γ

+

n−1∑
m=1

1 + k
γ

m(1 +m+ k
γ )

]
(19)

The third moment 〈t3〉:

From Eq. (10), we get

〈t3〉 =− ∂3f̃(X,x, s)

∂s3

∣∣∣∣
s=0

=h(3)(0)− g(3)(0) + 3h(1)(0)
(
g(2)(0)− 2h(2)(0)

)
+ g(1)(0)

(
3h(2)(0)− 6(h(1)(0))2

)
+ 6(h(1)(0))3

(20)
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where h(1)(0), h(2)(0), g(1)(0) and g(2)(0) are given by Eqs. (13, 18, 14 and 19) respectively. So,
h(3)(0) and g(3)(0) remains to be evaluated. Differentiating Eq. (17) with respect to s, we get

h(3)(s) =
1

γ3

∞∑
n=1

1

n!

(
X

b

)n (
s
γ

)
n(

1 + k+s
γ

)
n

{n−1∑
m=0

[
1

s
γ +m

− 1

1 + k+s
γ +m

]}3

+2

n−1∑
m=0
l=0

[
1

s
γ +m

− 1

1 + k+s
γ +m

][
− 1

( sγ + l)2
+

1

(1 + k+s
γ + l)2

]

+
n−1∑
m=0
l=0

[
1

s
γ +m

− 1

1 + k+s
γ +m

][
− 1

( sγ + l)2
+

1

(1 + k+s
γ + l)2

]

−2
n−1∑
m=0

[
− 1

( sγ +m)3
+

1

(1 + k+s
γ +m)3

])
(21)

In the limit of s = 0, we have

h(3)(0) =
3

γ3

∞∑
n=1

(
X

b

)n 1

n
(

1 + k
γ

)
n

n−1∑
m=1
l=1

1− δm,l
ml

+
n−1∑
m=0
l=0

1 + δm,l

(1 + k
γ +m)(1 + k

γ + l)

−2

n−1∑
m=1
l=0

1

m(1 + k
γ + l)


(22)

and similarly,

g(3)(0) =
3

γ3

∞∑
n=1

(x
b

)n 1

n
(

1 + k
γ

)
n

n−1∑
m=1
l=1

1− δm,l
ml

+

n−1∑
m=0
l=0

1 + δm,l

(1 + k
γ +m)(1 + k

γ + l)

−2
n−1∑
m=1
l=0

1

m(1 + k
γ + l)


(23)

The Cumulants:

The standard definitions of the CV 2 and skewness are:

(i)

CV 2 =
Variance

mean2
=
〈t2〉
〈t〉2
− 1 (24)
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(ii)

Skewness =
〈(t− 〈t〉)3〉
Variance3/2

=
〈t3〉 − 3〈t2〉〈t〉+ 2〈t〉3

(〈t2〉 − 〈t〉2)3/2
(25)

S6: Bootstrapping method:

Here we outline the method followed in “bootstrapping”, mentioned in the text.

1. For each mutant, out of around 150 lysis time samples available, 80 samples were choosen
randomly, with replacement. The sample size (80) was chosen such that the error bars
were shortest.

2. For the random set of 80 lysis times, the statistics (mean, CV 2 and skewness) were calcu-
lated.

3. The above steps were repeated 1000 times. The number of repetition should be as large
as possible. We found that beyond 1000 (for example 10000), the length of error bars did
not change significantly, so we kept it 1000.

4. We then had a list of 1000 mean values, 1000 CV 2 values and 1000 skewness values. We
arranged them in ascending order.

5. To get a confidence interval of x%, we needed to ignore the (100−x)% extreme points. So,
for 90% confidence interval, we discarded the left 5% and right 5% of the 1000 bootstrap
values, that is, 50 data points from each of left and right. Hence the error bars were
marked by the 50th and the 950th elements of the list of 1000 values.

S7: Fitting of experimental data with our theory to extract the
value of k:

We can calculate experimental values of 〈t〉 and CV 2 from the 90 - 175 sample lysis times for
any of the λ-mutants. The theoretical expression of FPTD in Laplace space, and hence all the
moments depend on the four parameters- x/b, k, γ and X/b. We choose x/b to be a small value
0.01, as at the beginning of the lytic cycle the protein concentration is supposed to be vanishingly
small. E. Coli cell-doubling time is ≈ 40 min (at 37◦ C) and holin degradation timescale is very
large. So, we choose γ = ln(2)/40 min−1. We hope that k is similar for all the mutants and
they have distinct X/b.

We extract k by doing a best fit of the theoretical curve of CV 2 versus 〈t〉 to the experimental
data. The procedure is as follows. We vary the value of k over a range 1 min−1 − 15 min−1

in steps of 0.1 min−1. For one such value of k, using Eq. (15) with upper limit of the sum
on n being chosen 1000 (a large numerical value as a substitute for ∞), we obtain numerically
using Mathematica the value of X/b. Using this value of X/b and other parameter values as
mentioned, using Eq. (16), we obtain a theoretical trial value of CV 2 for that particular mutant.
Having 20 such values for 20 mutants, we obtain a sum of squares of the differences of these
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theoretical trial CV 2 and the corresponding experimental CV 2 of all the mutations. The value
of k for which this sum of squares is a minimum, gives us the best fit for k — we obtained
k = 4.5 min−1.

Once we have this best fitted k and the chosen values of γ and x/b, for any mutant we set
the theoretical mean 〈t〉 equal to the experimental mean FPT, and thus obtain the full time
dependent FPTD by numerically inverting the exact FPTD in Laplace space (Eq. (7)).

S8: Exponential tail and the characteristic time of the FPTD:

The FPTD which is the Laplace inverse transform of f̃(X,x, s) (Eq. (7)) has an asymptotic
exponential tail, i.e. for large t, f(X,x, t) ∼ exp(−t/τc). The quantity τc is called the char-
acteristic FPT. It may easily be obtained from a negative pole of f̃(X,x, s) as follows. Note
that

f̃(X,x, s) =
1F1[ sγ , 1 + k+s

γ , xb ]

1F1[ sγ , 1 + k+s
γ , Xb ]

=
1F1[ sγ , 1 + k+s

γ , xb ]

a0

∞∏
i=1

(s+ αi)

(26)

where, −αi’s are the roots of the function 1F1[ sγ , 1 + k+s
γ , Xb ] and a0 is a constant dependent

on the parameters k, γ and X/b. Hence f(X,x, t) =
∞∑
i=1

cie
−αit and in the limit of large t,

f(X,x, t) = c∗e
−α∗t where α∗ is the smallest of {αi}. Thus τc = 1/α∗.

For the mutant JD426 with 〈t〉 = 140 min, we first obtain the value of X/b numerically
solving Eq. (15) for 〈t〉 = 140 min, k = 4.5 min−1, γ = ln(2)/40 min−1 and x/b = 0.01.
We find X/b = 241.9. We use this value to find α∗, which is the negative of the root of

1F1[ sγ , 1 + k+s
γ , Xb ] nearest to 0. We get α∗ = 0.0374 min−1 and the characteristic first passage

time, τc = 1/α∗ = 1/0.0374 = 26.72 min. In Fig. (2a), we have plotted the exact theoretical
FPTD along with the asymptotic exponential function, e−t/τc , in semi-log scale. The two curves
merge for large t confirming the exponential tail and the calculated value of τc.

Next we note that τc is a measure of the spread of the FPTD and of fluctuations in FPT.
We plot a scaled time τc/〈t〉 against mean first passage time 〈t〉 in Fig. (2b). Like CV 2 and
Skewness, we see that it has a non-monotonic shape. For larger mean FPT, the characteristic
time gets larger indicating the broadening of the exponential tail.

S9: Analytical argument for linear relationship between optimal
mean FPT tm and 1/γ:

In Eq. (15) above for mean FPT, if we set initial concentration x→ 0,

〈t〉 =
1

γ

∞∑
n=1

1

n

(
X

b

)n 1(
1 + k

γ

)
n

(27)
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Figure 2. (a) For the mutant JD426, given the parameter values mentioned in the text, the
exact theoretical FPTD (solid curve) is plotted (in semi-log scale) along with the asymptotic
exponential function (dashed curve) with τc = 26.72 min, as a function of the the FPT. (b)
Plot of scaled characteristic time τc/〈t〉 versus mean FPT 〈t〉.

For threshold X less than the steady-state mean protein concentration, css = kb/γ, in Eq.

(27), the term
(

1 + k
γ

)
n

will be clearly greater than (X/b)n. Moreover, 1/n term makes the

nth term in the summation decrease fast so that only the first few terms actually contribute.
Typically, values of k and γ are of the order 100 and 10−2 respectively. So, k/γ will be of the
order of 102 � 1. Hence, (

1 +
k

γ

)
n

≈
(
k

γ

)n
Eq. (27) then becomes

〈t〉 ≈1

γ

∞∑
n=1

1

n

(
X

b

)n 1(
k
γ

)n
=− 1

γ
ln

(
1− Xγ

kb

)
(28)

Now if one wants an “optimal 〈t〉” = tm to minimise fluctuations, one has to minimise
the expression of CV 2 (involving the moments in Section S5:) — that calculation does not
give simple expressions. Yet one may expect tm to correspond to some “optimal threshold
concentration” Xopt, which on general dimensional grounds should be a fraction f of the steady
state concentration css. Thus,

Xopt = f.css = f
kb

γ
(29)

and from Eqs. (28) and (29), putting X = Xopt we have optimal mean FPT 〈t〉 = tm, given by:

tm = −1

γ
ln(1− f) (30)
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Thus we have shown analytically that a linear relationship is expected between tm and 1/γ. We
find the value of f ≈ 0.55 numerically.

S10: Approximate Theory: Fokker-Planck equation and Langevin
equation:

Kramers-Moyal expansion:

Kramers–Moyal expansion [2] refers to a Taylor series expansion of the master equation, assum-
ing small jumps y = x′ − x. We first discuss the general procedure to derive a Fokker-Planck
equation in this way, and then apply it to the problem of protein production. Given the transi-
tion rate from x to x′ equal to W (x′|x), the generic backward master equation is

∂S(x, t)

∂t
=

∫ ∞
−∞

dx′[W (x′|x)S(x′, t)−W (x′|x)S(x, t)] (31)

on substituting y = x′ − x becomes

∂S(x, t)

∂t
=

∫ ∞
−∞

dyW (x+ y|x)S(x+ y, t)−
∫ ∞
−∞

dyW (x+ y|x)S(x, t) (32)

Now, Taylor expanding Eq. (32) around x

∂S(x, t)

∂t
=

∫ ∞
−∞

dyW (x+ y|x)
∞∑
n=0

[
yn

n!

∂nS(x, t)

∂xn

]
−
∫ ∞
−∞

dyW (x+ y|x)S(x, t)

=
∞∑
n=1

α(n)(x, t)

n!

∂n

∂xn
[S(x, t)] where, α(n)(x, t) =

∫ ∞
−∞

dyW (x+ y|x)yn (33)

In our problem, the burst size is exponentially distributed, and the burst rate is k, such that

W (x+ y|x) =

{
k
b e
− y
b for y ≥ 0

0 for y < 0
(34)

and we may get α(0)(x, t), α(1)(x, t) and α(2)(x, t) from Eq. (33)) as

α(0)(x, t) =

∫ ∞
0

dy
k

b
e−

y
b = k (35)

α(1)(x, t) =

∫ ∞
0

dy
k

b
e−

y
b y = kb (36)

α(2)(x, t) =

∫ ∞
0

dy
k

b
e−

y
b y2 = 2kb2 (37)

The backward master equation (Eq. (1), including protein degradation, for our problem is

∂S(X,x, t)

∂t
= k

∫ X

x
dx′[ν(x′ − x)− δ(x′ − x)]S(X,x′, t)− γx∂S(X,x, t)

∂x

13



and putting Eqs. (35), (36) and (37) in Eq. (33), and truncating the Kramers-Moyal expansion
up to the second-order term we get the approximate backward Fokker-Planck equation as follows:

∂S(X,x, t)

∂t
= (kb− γx)

∂S(X,x, t)

∂x
+ kb2

∂2S(X,x, t)

∂x2
(38)

The Langevin equation in forward formalism:

The forward Fokker-Planck equation corresponding to Eq. (38) follows as a standard result [2,5]:

∂p(c, t′)

∂t′
= −kb∂p(c, t

′)

∂c
+ kb2

∂2p(c, t′)

∂c2
+

∂

∂c
[γcp(c, t′)] (39)

which may be also obtained as the Kramers-Moyal expansion of the forward Master equation
Eq. (2) for the protein concentration p(c, t′) developed in [3]:

∂p(c, t′)

∂t′
= k

∫ c

0
dc′[ν(c− c′)− δ(c− c′)]p(c′, t′) + γ

∂[cp(c, t′)]

∂c

Under Ito’s convention [2, 5], the forward Fokker-Planck equation Eq. (39) corresponds to
the following Langevin equation:

dc

dt′
= kb− γc+ η(t′) (40)

where, η(t′) is a Gaussian noise with zero mean, 〈η(t′)〉 = 0, and delta correlation, 〈η(t′1)η(t′2)〉 =
2Dδ(t′1−t′2), and the diffusion constant needs to be identified as D = kb2. The term kb represents
production of protein molecules with a fixed burst size b. The second term, −γc, represents decay
of protein concentration.

S11: Exact FPTD in Laplace space, for the approximate theory:

We may exactly solve the Eq. (38) as follows. Defining the Laplace transform S̃(X,x, s) =∫∞
0 e−stS(X,x, t), the Laplace transform of Eq. (38) is

sS̃(X,x, s)− 1 = (kb− γx)
∂S̃(X,x, s)

∂x
+ kb2

∂2S̃(X,x, s)

∂x2
(41)

which leads to

∂2S̃(X,x, s)

∂x2
+

(
kb− γx
kb2

)
∂S̃(X,x, s)

∂x
− s

kb2
S̃(X,x, s) = − 1

kb2

Performing a linear transformation,
(
kb−γx
kb2

)
= −2v, with dx = 2kb2

γ dv we get

γ2

4k2b4
∂2S̃

∂v2
− 2vγ

2kb2
∂S̃

∂v
− s

kb2
S̃ = − 1

kb2

14



and then a scale transformation, v
√

2kb2

γ = u, dv =
√

γ
2kb2

du leads to

∂2S̃

∂u2
− 2u

∂S̃

∂u
− 2

s

γ
S̃ = −2

γ
(42)

The homogeneous part of Eq. (42) is a Hermite equation [6], and a particular solution of the
inhomogeneous equation is 1/s. Using the relations between the Hermite function and confluent
hypergeometric function of the first kind 1F1 and that of Tricomi’s U [6], we write the solution
of Eq. (42) as:

S̃(X,x, s) =
1

s
+ α1F1

[
s

2γ
,
1

2
,
(bk − γx)2

2b2γk

]
+ βU

[
s

2γ
,
1

2
,
(bk − γx)2

2b2γk

]
(43)

We note that as k tends to 0, the term (bk−γx)2

2b2γk
→ ∞, and in such a limit asymptotically,

1F1

[
s

2γ ,
1
2 ,

(bk−γx)2

2b2γk

]
tends to ∞ while U

[
s

2γ ,
1
2 ,

(bk−γx)2

2b2γk

]
tends to 0 [6]. This would imply that

S̃(X,x, s) will be unbounded as k → 0 for every value of the Laplace variable s. Consequently
S(X,x, t) would be unbounded, which cannot be, as it belongs to the range [0, 1]. So, we discard
the 1F1 solution, i.e., we set α = 0.

Using the boundary condition, S(X,X, t) = 0, we fix β and get

S̃(X,x, s)

∣∣∣∣
approx

=
1

s

1−
U
[
s

2γ ,
1
2 ,

(bk−γx)2

2b2γk

]
U
[
s

2γ ,
1
2 ,

(bk−γX)2

2b2γk

]
 (44)

Using the relation f̃(X,x, s) = 1− sS̃(X,x, s), we get the exact FPTD in the Laplace space for
this approximate theory:

f̃(X,x, s)

∣∣∣∣
approx

=
U
[
s

2γ ,
1
2 ,

(bk−γx)2

2b2γk

]
U
[
s

2γ ,
1
2 ,

(bk−γX)2

2b2γk

] (45)

S12: Exact moments, of the approximate theory:

Like Section (S5:) above, we proceed by defining the FPTD (Eq. (45)) of the approximate
theory as

f̃(X,x, s)approx =
g(s)

h(s)
(46)

where, g(s) = U
[
s

2γ ,
1
2 ,

(bk−γx)2

2b2γk

]
and h(s) = U

[
s

2γ ,
1
2 ,

(bk−γX)2

2b2γk

]
.
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Mean first passage (first moment, 〈t〉):

〈t〉 = −∂f̃(X,x, s)

∂s

∣∣∣∣
s=0

= h(1)(0)− g(1)(0) where, g(n)(0) =
∂ng(s)

∂sn

∣∣∣∣
s=0

and h(n)(0) =
∂nh(s)

∂sn

∣∣∣∣
s=0

(47)

The Tricomi’s confluent hypergeometric function, U , can be witten in terms of confluent
hypergeometric function (of first kind ), 1F1, as [6]:

U

[
s

2γ
,
1

2
, z

]
=

Γ(1
2)

Γ( s
2γ + 1

2)
1F1

[
s

2γ
,
1

2
, z

]
+

Γ(−1
2)

Γ( s
2γ )

z
1
2 1F1

[
s

2γ
+

1

2
,
3

2
, z

]
(48)

∂U

∂s
=Γ

(
1

2

)[
− 1

Γ( s
2γ + 1

2)2
Γ

(
s

2γ
+

1

2

)
ψ

(
s

2γ
+

1

2

)
1F1

[
s

2γ
,
1

2
, z

]
1

2γ

+
1

Γ( s
2γ + 1

2)
1F

(1)
1

[
s

2γ
,
1

2
, z

]]
+ Γ

(
−1

2

)
z

1
2

− 1

Γ
(
s

2γ

)2 Γ

(
s

2γ

)
ψ

(
s

2γ

)
1

2γ
1F1

[
s

2γ
+

1

2
,
3

2
, z

]

+
1

Γ
(
s

2γ

)1F
(1)
1

[
s

2γ
+

1

2
,
3

2
, z

] (49)

In Eq. (49), the superscipts, (n), denotes nthderivatives and ψ(x) is the polygamma function

defined as ψ(x) = ∂lnΓ(x)
∂x [6]. We note three results (i)-(iii) below.

(i)

1F
(1)
1

[
s

2γ
,
1

2
, z

]
=

1

2γ

∞∑
n=1


(
s

2γ

)
n(

1
2

)
n

zn

n!

n−1∑
p=0

1
s

2γ + p

 (50)

which in the limit of s = 0,

=
1

2γ

∞∑
n=1

zn(
1
2

)
n
n

(51)

(ii) It is know from [6]:

ψ (x)

Γ (x)

∣∣∣∣
x=0

= −1 (52)

(iii) It is known that

Γ (x)

∣∣∣∣
x=0

= −∞ (53)
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Using Eqs. (51, 52 and 53) in Eq. (49), we get

∂U

∂s

∣∣∣∣
s=0

=
1

2γ

[
−ψ

(
1

2

)
+
∞∑
n=1

zn(
1
2

)
n
n

+ Γ

(
−1

2

)
z

1
2 1F1

[
1

2
,
3

2
, z

]]
(54)

Note g(1)(0) and h(1)(0) are given by:

g(1)(0) =
∂U

∂s

∣∣∣∣ s=0

z=
(bk−γx)2

2b2γk

and h(1)(0) =
∂U

∂s

∣∣∣∣ s=0

z=
(bk−γX)2

2b2γk

(55)

So, using Eq. (54) in Eq. (47), we get the mean first passage time as

〈t〉 =− ∂U

∂s

∣∣∣∣ s=0

z=
(bk−γx)2

2b2γk

+
∂U

∂s

∣∣∣∣ s=0

z=
(bk−γX)2

2b2γk

(56)

=
1

2γ

[ ∞∑
n=1

1(
1
2

)
n
n

((
(bk − γX)2

2b2γk

)n
−
(

(bk − γx)2

2b2γk

)n)

−2
√
π

((
(bk − γX)2

2b2γk

) 1
2

1F1

[
1

2
,
3

2
,
(bk − γX)2

2b2γk

]
−
(

(bk − γx)2

2b2γk

) 1
2

1F1

[
1

2
,
3

2
,
(bk − γx)2

2b2γk

])]
(57)

The second moment 〈t2〉:

〈t2〉 =
∂2f̃(X,x, s)

∂s2

∣∣∣∣
s=0

= g(2)(0)− h(2)(0) + 2h(1)(0)
(
h(1)(0)− g(1)(0)

)
(58)

Differentiating Eq. (49) with respect to s:

∂2U

∂s2
=Γ

(
1

2

)−(ψ( s
2γ + 1

2)

Γ( s
2γ + 1

2)

)(1)

1F1

[
s

2γ
,
1

2
, z

]
1

2γ
−
ψ( s

2γ + 1
2)

Γ( s
2γ + 1

2)

1

2γ
1F

(1)
1

[
s

2γ
,
1

2
, z

]

+
1F

(2)
1

[
s

2γ ,
1
2 , z
]
− ψ( s

2γ + 1
2)1F

(1)
1

[
s

2γ ,
1
2 , z
]

1
2γ

Γ( s
2γ + 1

2)


+ Γ

(
−1

2

)
z

1
2

−
ψ

(
s

2γ

)
Γ
(
s

2γ

)
(1)

1F1

[
s

2γ
+

1

2
,
3

2
, z

]
1

2γ
−
ψ
(
s

2γ

)
Γ
(
s

2γ

) 1

2γ
1F

(1)
1

[
s

2γ
+

1

2
,
3

2
, z

]

+
1F

(2)
1

[
s

2γ + 1
2 ,

3
2 , z
]
− ψ

(
s

2γ

)
1F

(1)
1

[
s

2γ + 1
2 ,

3
2 , z
]

1
2γ

Γ
(
s

2γ

)
 (59)
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(i) From Eq. (50),

1F
(2)
1

[
s

2γ
,
1

2
, z

]
=

1

(2γ)2

∞∑
n=1

zn

n!
(

1
2

)
n

(
s

2γ

)
n

n−1∑
p=0
m=0

1(
s

2γ + p
)(

s
2γ +m

) − n−1∑
p=0

1(
s

2γ + p
)2


which in the limit of s = 0,

=
1

(2γ)2

∞∑
n=1

2zn

n
(

1
2

)
n

n−1∑
m=1

1

m
(60)

(ii)

1F
(1)
1

[
s

2γ
+

1

2
,
3

2
, z

]
=

1

2γ

∞∑
n=1

(
s

2γ + 1
2

)
n(

1
2

)
n

zn

n!

n−1∑
m=0

1
s

2γ + 1
2 +m

which in the limit of s = 0,

=
1

2γ

∞∑
n=1

zn

n!

n−1∑
m=0

1
1
2 +m

(61)

(iii) From [6]:

∂

∂x

(
ψ(x)

Γ(x)

) ∣∣∣∣
x=0

= −2E (62)

where E is Euler’s constant, E = 0.57721...

Put Eqs. (51) - (53) and (60) - (62) in Eq. (59),

∂2U

∂s2

∣∣∣∣
s=0

=
1

(2γ)2

−√π(ψ (1
2

)
Γ
(

1
2

))(1)

− 2ψ

(
1

2

) ∞∑
n=1

1(
1
2

)
n

zn

n
+
∞∑
n=1

2zn

n
(

1
2

)
n

n−1∑
m=1

1

m


−
√
πz

1
2

γ2

[
E1F1

[
1

2
,
3

2
, z

]
+

∞∑
n=1

zn

n!

∞∑
m=0

1
1
2 +m

]
(63)

From Eq. (63) we can get the expressions of g(2)(0) and h(2)(0):

g(2)(0) = ∂2U
∂s2

∣∣∣∣ s=0

z=
(bk−γx)2

2b2γk

and h(2)(0) = ∂2U
∂s2

∣∣∣∣ s=0

z=
(bk−γX)2

2b2γk

Substituting these expressions along with the previously obtained expressions of g(1)(0) and
h(1)(0) (Eq. (55)) into Eq. (58), we will finally get the expression for 〈t2〉
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Third moment, 〈t3〉:

〈t3〉 =− ∂3f̃(X,x, s)

∂s3

∣∣∣∣
s=0

=h(3)(0)− g(3)(0) + 3h(1)(0)
(
g(2)(0)− 2h(2)(0)

)
+ g(1)(0)

(
3h(2)(0)− 6(h(1)(0))2

)
+ 6(h(1)(0))3

(64)
For third moment, we need to evaluate two more terms, g(3)(0) and h(3)(0):

g(3)(0) = ∂3U
∂s3

∣∣∣∣ s=0

z=
(bk−γx)2

2b2γk

and h(3)(0) = ∂3U
∂s3

∣∣∣∣ s=0

z=
(bk−γX)2

2b2γk

∂3U
∂s3

can be evaluated by taking one more derivative of Eq. (59) with respect to s. We skip the
calculation as it gets lengthy. The derivatives are easily evaluated numerically by Mathematica
which we use for our plots of Skewness in the main manuscript.
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(a) mutant-3 (JD388) (b) mutant-4 (JD391) (c) mutant-5 (JD414) (d) mutant-6 (S105)

(e) mutant-7 (WT) (f) mutant-8 (JD390) (g) mutant-9 (JD253) (h) mutant-10 (JD404)

(i) mutant-11 (JD415) (j) mutant-12 (JD413) (k) mutant-13 (JD248) (l) mutant-14 (JD251)

(m) mutant-15 (JD246) (n) mutant-16 (JD411) (o) mutant-17 (JD436) (p) mutant-18 (JD432)

(q) mutant-19 (JD434) (r) mutant-20 (JD428)

Figure 3. The FPTD from experiment and theory for 18 different mutants. The plots for the
remaining two mutants: mutant-1 (JD405) and mutant-2 (JD426) are in the main manuscript
(Fig. (2)).
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Figure 4. FPT Fano factor against 〈t〉 for 20 mutants (symbols) and exact continuous theory
(solid line) with k = 4.5 min−1, x/b = 0.01 and γ = ln(2)/40 min−1. Error bars are 90%
confidence intervals, obtained after bootstrapping 1000 replicates.
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