PRX LIFE 3, 043002 (2025)
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There is a long history of using experimental and computational approaches to study noise in single-cell
levels of mRNA and proteins. The noise originates from myriad factors: intrinsic processes of gene expression,
partitioning errors during division, and extrinsic effects, such as random cell-cycle times. Although theoretical

methods are well developed to analytically understand the statistics of copy numbers for fixed or Erlang
distributed cell cycle times, the general problem of random division times is still open. For any random (but
uncorrelated) division time distribution, we present a method to address this challenging problem and obtain
exact series representations of the copy number distributions in the cyclo-stationary state. We provide explicit cell

age-specific and age-averaged results, and analyze the relative contribution to noise from intrinsic and extrinsic
sources. Our analytical approach will aid the analysis of single-cell expression data and help in disentangling the

impact of variability in division times.

DOI: 10.1103/ysj3-gkrr

I. INTRODUCTION

Advances in technologies of single-cell RNA sequenc-
ing and single-molecule fluorescence in situ hybridization to
quantify mRNA levels and fluorescent proteomic imaging,
mass cytometry, and mass spectrometry to quantify protein
levels in individual cells have unmasked tremendous inter-
cellular variability within isogenic populations over the last
two decades [1-7]. Understanding the different sources of
stochasticity that drive this variability is key to the analysis
of single-cell transcriptomic and proteomics data and using
stochasticity as a tool to infer complex regulatory networks
[8-10]. Stochastic expression has been implicated in diverse
emerging medical problems, such as cancer drug resistance
[11-14], microbial persistence, and replication of human
viruses [15,16]. Advancing analytical tools for understanding
and modeling these inherent noise mechanisms can di-
rectly impact controlling cell-to-cell variation for therapeutic
benefit.

The protein and mRNA copy numbers in cells are deter-
mined by a series of coupled stochastic chemical processes,
leading to the above mentioned significant cell-to-cell vari-
ability. The transcriptional and translational noise arise due
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to multiple factors—genes switching between transcription-
ally active and inactive states, rapid decay of short-lived
mRNA leaving behind long-lived proteins making them
appear in bursts, and other factors like RNA splicing
and post-transcriptional regulation by micro-RNAs [17-23].
Theoretical studies of simple models (ignoring certain com-
plexities) have obtained analytical moments and probability
distributions of mRNA and protein count in the steady state
[19,24-29], as well as for transient perturbations [30] and
along the cell cycle [31].

In addition to intrinsic noise in gene expression specific to
every gene, there are extrinsic factors affecting all genes. Two
significant contributors to cell-to-cell variability in copy num-
ber, on which we focus in this paper, are noise incorporated
through variable cell-cycle times [32—-38] and random parti-
tioning of copy numbers to daughter cells after cell division
[39-42]. The noise associated with cell division has also been
considered by various theoretical studies on copy number
fluctuations [31,43-50], discussed in more detail below. In
this paper we revisit this problem.

Within a cell cycle with finite division time, steady states
are not attained for mRNA and protein counts. Yet after
many successive cycles of division, a cyclo-stationary state is
reached when time-independent distributions are attained for
every cell “age”—the age is zero at birth and maximum just
before division. The statistics of copy numbers in the cyclo-
stationary state have been of central interest in the literature
mentioned above.

What decides the instant of cell division still remains
an intriguing question. Cell division has been argued to
be triggered by a “timer,” a “sizer,” or an ‘“adder” mech-
anism. In the “timer” scenario, it is assumed that cell
division happens after fixed times 7" [51]. This is a common
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assumption and has been extensively used in the theoretical
literature [31,39,43,44,48,49,52]. Yet quite generally, cell di-
vision times are known to be random and also dependent on
the cell size to ensure size homeostasis [32-36,53-58]. In
the “sizer” view, division occurs when a cell size threshold
is crossed [51,59], while in the “adder” view, it happens
when the additional cell size growth from the initial birth size
crosses a threshold [60-62].

In the literature, “threshold crossing” has been modeled
in different ways. One approach splits the cell cycle into a
sequence of N steps with exponentially distributed time inter-
vals, leading to cell division and copy number partitioning at
the end of the Nth step, which therefore acts like a threshold.
The N steps are not actual cell cycle phases, but a model
assumption. The total cell division time follows an Erlang or
hypoexponential distribution in such cases [37,47,48,50,63—
66]. In contrast, another view treats cell division as a first-
passage time problem [67,68] (i.e., first threshold crossing of
key regulatory protein). For an auto-catalytic growth process
this leads to a Beta-exponential distribution of division times
[69,70]. Some recent works have assumed stochastically fluc-
tuating thresholds instead of a fixed threshold, and proposed
some empirically relevant distributions of cell cycle times
[71,72].

The variability of cell cycle times is thus a fact how-
soever diverse may be the cause, yet theoretical works in
the past have not treated this aspect in full generality. One
study considered random cell division times and obtained
exact moments of the copy numbers, but nevertheless assumed
deterministic growth kinetics and deterministic partitioning
[73]. A large body of analytical work has completely ignored
the randomness in cell cycle times. The coefficient of varia-
tion was studied in [39] for fixed division times, comparing
the relative role of gene expression noise versus binomial
partitioning. Under the same assumption of fixed times, the
generating functions for the distributions of mRNA and pro-
teins in the cyclo-stationary state were derived for various
models [31,43,44,48,49,74]. Specifically, constitutive bursty
protein production [48], a two-stage model for mRNA syn-
thesis with active and inactive transcription states [49], and
a three-stage model for protein synthesis [31] were studied.
The exact generating functions were derived for age-specific
and age-averaged cases, and in the presence or absence of
gene duplication. The desired probability distributions of copy
number were then obtained through numerical derivatives of
the generating functions.

Random cell cycle times were treated in another set of
works, but for a special class of distributions: Erlang, mixed
Erlang, and hypoexponential. These distributions permit an
alternate representation of the cell cycle by a Markov chain
of N stages each with an exponentially distributed lifetime.
This technical simplicity, along with further assumption of
steady state in each stage, led to exact moments and cumu-
lants [47,63,64]. Under the same assumptions, the generating
function for “age-averaged” protein distributions, for bursty
synthesis without degradation, were derived in [48]. The
complexities of volume-dependent gene expression, gene du-
plication, and dosage compensation were also incorporated in
two of these papers [48,50]. The power spectra of the copy

number autocorrelation function in the cyclo-stationary state
were studied in [65].

Although the literature discussed above has made valuable
contributions to our theoretical understanding of the problem
and compared with some experimental data, it is evident that
an analytical approach is lacking to treat arbitrary random
division times which may arise in experiments. Even the only
case widely studied, namely, Erlang (and hypoexponential),
used an assumption of steady state for each of the constitutive
stages of the process, and thereby was limited to obtain the
“age-averaged” distributions of the copy number. Cell age-
specific distributions are preferable as age-averaged ones may
be derived from those, but the other way around is not pos-
sible. Given this, and the fact that other empirically relevant
distributions have been reported [69,71,72], there is sufficient
motivation to take a fresh look at the problem in this paper.

We adapt the framework of generating functions used for
solving the cyclo-stationary distributions of copy numbers to
the case of random division times, and first indicate why going
beyond the case of fixed cell cycle times has remained tech-
nically challenging. We then develop a method to tackle this
problem mathematically and evaluate the cyclo-stationary dis-
tributions as certain analytically exact series (Sec. II). Instead
of enumerating the derivatives of the generating functions
[31,48,49], the method now requires summing the relevant
series directly. It works for any random (uncorrelated) cell
cycle time distribution: the Erlang distribution can now be
plugged in directly without splitting it into steps, just like
Beta exponential, lognormal, or other empirically relevant
distributions (Secs. III and VID) as we show in the paper. We
also show that for fixed division times, the cyclo-stationary
mRNA distribution is exactly Poisson (Sec. IV). We pro-
vide explicit results for the basic gene expression model of
mRNA synthesis and bursty protein production, with both
having finite degradation rates [27,75] (Secs. IV and V). The
cyclo-stationary distributions we obtain are age-specific: at
cell birth, before division, or any time in between (Sec. VI A).
We show that the age-averaged results may be obtained us-
ing suitable age frequency functions (Sec. VIB). Exact noise
(CV?) formulas and separate contributions to it from intrinsic
and extrinsic sources are calculated; the part due to random
cell cycle times depending on its distribution can be as high
as 50% (Sec. VIC). The skewness shows a nonmonotonicity
with mean division times, which is more pronounced with
higher variability of cell cycle times, and thus can serve as
a diagnostic of the variability itself (Sec. V). The impact of
correlations in successive cycle times is studied in Sec. VIE.

II. THE METHOD TO TREAT RANDOM CELL CYCLE
TIMES AND CYCLO-STATIONARY DISTRIBUTIONS AT
CELL BIRTH AND BEFORE DIVISION

In this section, we present a general framework within
which cyclo-stationary distributions of mRNAs or proteins
may be analytically derived, for random cell cycle times. Let
us denote the integer copy number of either mRNA or protein
by y(¢). Later we will replace y(t) = m(t) for mRNA and
y(t) = n(t) for protein. As shown schematically in Fig. 1, y(¢)
grows from a value y, ; ; at the beginning of the ith cell
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FIG. 1. Schematic diagram of time evolving copy number, of
either mRNA [m(¢)] or proteins [n(z)] in successive generations,
interrupted by cell divisions when the number y_ ; binomially divides
to x;; and y,; in the two daughter cells. The durations {z,} of the
cell cycles are random, and drawn from a probability dlstrlbutlon
g(t,). After several generations, i > 1, the copy numbers attained
cyclo-stationary distributions P{*(m. ) and P{*(n,.), which are studied
in the text.

cycle to a value of y_; at its end. Then as the cell divides,
y—.; binomially partitions between two daughter cells with
copy numbers y; ; and x;; =y_; —y4; [76]. This process
repeats over several generations through repeated cell divi-
sions as depicted in Fig. 1, i.e., i = 1,2,.... All the details
of gene expression within a cell cycle through transcription
and translation are described by the probability distribution
pOVy.i + X4t |y+.i—1). Here ¢, denotes the duration of the
ith cell cycle. Using the binomial distribution B(Ny, p, x) =
(")p(1 = pyM= with p = 1/2, we may relate the distri-
butions of copy numbers PL(yy.irt;) and PL(y_;, ;) just
after and just before the ith cell division, respectively, to
the distribution Pfl(yﬂ-, 1, t5;_,) after the (i — 1)th cycle as
follows:

Pl y-‘rl’ts, ZZB<y+1+x+u%’ ,i)

Y1 X0
X p(yi + Xei to [yimt) P (et ).
(H
Py inty) =D ply—ista|yric) P (ot 1) ()

Y+.i-1

Cyclo-stationary state is attained for i > 1, when the above
two distributions approach steady (cycle independent) forms
P¥(yy) (for new born cells) and P¥(y_) (for most mature
cells before division). Our aim in this section is to solve for
these.

To reemphasize, there are three sources of stochastic-
ity: gene expression controlling the evolution of y(¢) within
every cycle, the random binomial partitioning at every di-
vision step, and the random cell cycle times {¢;}. Let the
distribution of these division times be g(#;), that the suc-
cessive cell division time function g, (%, ;, ,) = 8(t;,)8(ts, ,)-
In such cases, starting from Eqs. (1) and (2), it may be
shown [see the Supplemental Material (SM) Sec. IA [77]]

that the cyclo-stationary copy number distributions P{¥(y+) =
Jo~ dtsg(ts )Py (v i, 1) satisty

o0 1
PEOW =) Z/ dtsg(ts)B(y+ +x4, §’x+)
vy a0
X p(yy + x4, 6y, OPY ), 3)

Pis(yf)zz /0 dtsg(t)p(y-, [y t)PY (). (4)

Here subscripts i has been dropped by setting ¢, = ¢, and
y+;=y+ to indicate the history independence. Next we
need information of the model of gene expression. For a
concrete study, we suppose the evolving copy number dis-
tribution p(y,t|y’,) has a generating function F(q,t[y’ ) =
> 20 @' P, 11y} of the form

F(g.tly,) = #(q—1,pt) x [1+(@—De P+, (5)

which is indeed the case for gene expression models of mRNA
and protein, studied below [see Egs. (20) and (25)]. The initial
count y’, -dependent factor is expected in any model with the
degradation rate y,, while the function J2°(-) is specific to the
process (e.g., see [49]). Given Eq. (5), it may then be shown
(SM Sec. IB [77]) that the generating functions Fi(q) =
Zi:o q"* P (y+) of the cyclo-stationary distributions follow:

*° -1 -1
F.(q) =/ dtsg(ts)if( , yvts>F+< 4 e"“"‘),
0

(6)
F_(q) =F:(2q9—1). 7

For fixed cell cycle time T, i.e., g(t;,) = §(¢;, — T'), Eq. (6)
solves exactly for the generating function (see SM Sec. IC)

Folg) — H%ﬂ((q . )<e ’
k=1

- T k—1
) ,VyT), ®)

reminiscent of earlier works [43,48,49]. Consequently, the
steady-state probability is obtained through its derivatives:

PE(yy) = o , Bq‘+ 2L (9)] q4=0- In contrast, for a random f;, with

a general distribution g(t,), the F, in the right-hand side
of Eq. (6) on repeated iteration leads to nested integrals as
shown in Eq. (21) of SM Sec. IC [77], which are generally
intractable. Thus, the function F (g) in general seems hard to
find analytically.

We bring a useful insight to this challenging problem by
noting that the mathematical structure of the problem at hand
is very similar to the one arising in the process of synap-
tic vesicle fusion and release across chemical synapses on
cyclic stimulation by action potentials [78—81]. The size of
the ready-release pool of synaptic vesicles in the presynaptic
neuron evolves as the copy number in Fig. 1. The arrival of
an action potential at the presynaptic terminal causes sudden
vesicle release and reduction of the pool size, just like the
reduction in copy number by partitioning during cell divi-
sion. The number of vesicles fused and released is binomially
distributed, resembling the binomial partitioning of the copy
number to daughter cells. The interspike intervals between the
arrival of action potentials are like random cell cycle times. In
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the study of statistics of the quantal content of synaptic vesicle
release, a similar equation as Eq. (6) arises [80], and we follow
an idea found useful in that context.

Note that in Eq. (6), the argument g of the generating
function F, on the left side, maps to another argument ¢’ =
1+ %e‘”’ on the right side. A fixed point of this map is
¢’ = g = 1. Hence, a useful way to proceed analytically is
to do an alternate series expansion of F(q) about g = 1 as
follows:

°° —1y .
P =Y 9= poq), ©

P

Substituting the above on both sides of Eq. (6), and equating
the coefficients of the power series in (¢ — 1), an exact recur-
sion relation between the coefficients F’ f_j )(1) of the following
general form may be obtained:

k
FO1) =) o FP). (10)
j=0
Explicit versions of the above equation for mRNA and protein
appear in Egs. (21) and (26), respectively, and their detailed
derivations are given in SM Secs. IIB and III B [77]. The
information of the distribution g(z;) gets embedded in the co-
efficients ¢y ;; see, e.g., Wi ; and Ly below Egs. (21) and (26),
respectively. Thus, the key to solving the cyclo-stationary
distributions of the copy number for random cell cycle times
is to evaluate the coefficients Ffr’ (1) using Eq. (10). Using
those, as shown in SM Sec. ID [77], the final distributions are
given by

o (k) (=D
o= (F)Sh—ro. an

= k!
5§ . k (_l)k_yizk (k)
PPy)=) (y )TF+ . 12
k=y_ - ’

Although we have so far discussed copy numbers of the
new-born (y,) and most mature cells before division (y_),
the calculations above may be extended to obtain the cyclo-
stationary distribution P**(y, t) at any intermediate cell age t
as shown in Sec. VIE. The age-averaged distributions P (y)
may further be obtained, given appropriate weights of cell age.

The first three cumulants associated with Pfr”)(y+) are

given exactly in terms of the same coefficients Ff )(1) as (see
SM Sec. IE [77])

ki = (y4) = FP (), (13)
= (g —i1)?) = FO(D) + FP 1) -« (14)

K3 = (v —«1)*) = 3FP () + FP (1) + F{"(1)
— 3Kk — Kf. (15)
Note that below we will study the standard measures of fluc-
tuations, namely, CV? = Z_; and skewness = 3 for P_(fs)(y+)
i L5
using Egs. (13)—(15).
In summary, while for constant #;, = T the exact gener-

ating function F,(g) [like in Eq. (8)] may be found and
inverted (through derivatives) to obtain the P*(y, ), here we

& %)
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FIG. 2. A schematic figure showing transcriptional production of
mRNAs from DNA at rate k,, and their translation to protein at rate
k,. They degrade at rates y,, and y,,, respectively. In the limit of slow
protein decay, y = /¥, > 1, the protein production is bursty with
an effective rate k,, with average burst size b.

have shown that for more realistic random #,, the distribution
P (y4) may be found directly as series sums [Egs. (11)], once

the crucial coefficients FJ(r'i )(1) are evaluated through an exact
recursion formula like Eq. (10).

III. THE MODELS AND DISTRIBUTIONS STUDIED

Gene expression: We consider the basic model of con-
stitutive gene expression (see Fig. 2), in which mRNAs are
produced (m — m + 1) at a rate k,, from the DNA tem-
plate, and they degrade (m — m — 1) at a rate y,,. Proteins
are produced from mRNAs at a rate k,, and they degrade
(n— n—1) at a rate y,. In this work we focus on cells
which have very slow protein degradation compared to the
mRNA (.e., y = )}'/—:" >> 1). This scenario is common in yeast
and bacteria, and one may treat the production of proteins
effectively in bursts, ignoring the intermediate creation of
mRNAs [20,27,75,82]. Hence in the protein production model
we study, protein copy number n — n + r in a burst, with the

. . . . b”
increment r distributed geometrically as T The mean

burst size b = k—; and the rate of production is indicated in
Fig. 2. The degradation rate y,, is taken to be finite throughout
this work.

Note that all our mathematical results for the mRNA in
this paper can be used as it is for proteins that have nonbursty
production (n — n + 1) and degradation, at constant rates.

Division time distributions: Although our results would
apply to any g(z,), for concrete comparison, we study few
distributions below with the same (z,) = T but different CV2.
The base line case is constant t;, = T with g(¢,) =6, — T)
has CV? = 0. The opposite extreme is the exponential distri-
bution g(t,) = %exp(—ts/T) with (t,) = T and CV? = 1. The
third one is the Erlang distribution

ANVEN=L exp(—Aty)

(N —1)! (16)

g(ts) =
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FIG. 3. The four cell cycle time distributions g(z;) versus t,, used
in the text: Dirac delta, Beta exponential with X = 20 and ny = X/2,
Erlang with N = 3, and exponential. Other parameters are chosen so
that they all have the same average (¢,) = T = 20 min. Their CV?
values are 0, 0.104, 0.33, and, 1, respectively.

with (t,) =7 = % and CV? = 1/N. Note that the Erlang in-
terpolates between the exponential (N = 1) and Dirac delta
(N — 00). It is a popular distribution studied in many ear-
lier works [37,48,64,73], but analyzed as an effective N step
Markov process with exponentially distributed waiting times
1/ [47,48]. We would however be using it directly (like [73])
with the given form of g(z,) in Eq. (16).

We would also study distributions of time #,, where division
arises due to some threshold crossing. The Beta exponential
distribution

_ Bexp(—Bnoty)[1 — exp(—pt,) K1~
8lt;) = e X =] (17)

describes cell division times #; when a fixed threshold X is
crossed for the first time by either cell size or protein biomass
in an autocatalytic growth process from an initial amount ng
at rate B. It has been applied to cell division times in the
bacteria Caulobacter crescentus [69,70,83]. Below we choose
the initial quantity ny = % (i.e., half of the threshold), and the
values of threshold X and growth rate §, to have the mean
cell cycle time (t;) =T = %]_[X_l(%) as desired in Fig. 3.
The CV? of the Beta exponential distribution works out to be
lower than the Erlang in Fig. 3, for our chosen parameters.

The quantity which crosses the threshold X to give rise to
the Beta exponential distribution [Eq. (17)], grows stochas-
tically with its mean growing exponentially as ~ exp(Bt).
Instead, if a deterministic growth of cell size is considered
as ~exp(Bt), but the growth rate 8 has a Gaussian variation
A (Bo, O'lg) within a population of cells, then for ng = X/2 the
effective division time distribution is

In2 (
————exp
12./2n0;

Recently, the possibility of a fluctuating (not fixed) threshold
X has been considered [71,72], which is crossed by an ex-
ponentially growing cell size. With a Gaussian fluctuation of
In(X/ng) having variance o3, the following distribution was

S=ny

(18)

_ 2
g(ts) = _M)

Z(IXO'ﬂ )2

obtained [72] and compared with experiments:

Pood + 07 1;1n2 ( (Bots — In2)> )
7 XX\~ |
V27 (0} + (05 1,)?) 2(0} + (t,08)?)

(19)
In Sec. IV we will compare the exact cyclo-stationary dis-
tributions for Egs. (18) and (19) with different oy (threshold
width).

g(ts) =

IV. CYCLO-STATIONARY DISTRIBUTIONS OF mRNA

The master equation for the stochastic kinetics of mRNA
number m(t) within a cell cycle starting from m/_ at the
beginning of the cycle, is provided in SM Sec. IT A [77],
and is solved to obtain the generating function F(q, t|m/ ) =
Z;O:O q" p(m, t|m/_) having a form the same as Eq. (5):

km

F(g, tlmy) = en!=¢ "D 4 (g — De ™. (20)

Thus, here the function J7 = em1=¢1a=1)  Hence the
generating functions for the cyclo-stationary distributions of
mRNA Fi(q) = ZZ:O q"* P (m4) satisfy Egs. (6) and (7)
with y; = my. We show in SM Sec. II B [77] that the series
expansion of F, (q) about g = 1 [similar as Eq. (9)] leads to
the following recursion relation among the coefficients Fi" (1)
[of the form as Eq. (10)]:

@ Lo (kY (K )
- SO e
=0

m

where W ; = f0°° dtyg(ty)e7nis (1 — el Yomi

The recursive Eq. (21) can be exactly solved for F+(k) (1)
[see Eq. (39) in SM Sec. II B [77]]. Hence through Egs. (11)
and (12), cyclo-stationary distributions P{*(m..) are formally

solved. The expression for F Jﬁk)(l) is a bit cumbersome, in-
volving sum over subsets of integers. For the following two
g(ty), simpler closed forms are obtained:

(i) For g(t;) =6(t;, —T), it may be shown (see de-
tails in SM Sec. IIC [77]) that F(1) = d* with d =
k 1—e~vm”

3——=mr- Lhe corresponding cyclo-stationary distributions
Y 2—e
[from Eqgs. (11) and (12)] are Poisson:

:i:mi

Py (my) = exp(—d*) (22)

mi!
withdt =d andd~ = 2d.

(ii)) For the exponential distribution g(t,) = 1/T exp
(—1/T), FO) = B RYTLG + i — 57) (see SM
Sec. IID [77]) and Egs. (11) and (12) lead to

‘ [k _ (9%
Py (my) = ( )(—n" " e :
Z ) B

(23)

with k} = ky/2 and k,, = ki,
As noted above, all the analytical expressions for mRNA
in this section also apply to nonbursty protein kinetics.
Summarizing from above, the recursion formula (21) was
solved by observing patterns in successive coefficients, and
the result further simplified for the Dirac delta and exponential
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FIG. 4. (a) Cyclo-stationary distribution P{*(m, ) of mRNA for
the four g(#,) shown in Fig. 3 (corresponding colors being the same).
The corresponding variation of CV? (b) and skewness (c) with vary-
ing (t;) are shown. Here k,, = 0.5, and y,, = 0.05. (d) Skewness for
kn, = 0.5, and y,, = 0.01. The solid lines follow analytical formulas,
while filled symbols represent KMC simulation data (using 10 x 107
histories).

g(t;) (SM Sec. II [77]). In general, for other distributions
(including Erlang and Beta exponential), simple formulas are
hard to derive. So for practical applications, one needs to
numerically estimate F_ﬁk)(l) from Eq. (21) and obtain the
P*(m=) from analytical series in Eqgs. (11) and (12). It needs

some care as the coefficients Fﬁk)(l) grow exponentially large
with k and the series for P{’(m4) typically converge very
slowly. In Sec. IV of SM [77] we discuss our numerical
protocol to estimate accurate F f‘)(l) by storing logarithms of
terms which are large numbers, and using very high precision
in Mathematica for calculations. With those coefficients the
series of P{*(m4 ) converge with reasonable number of terms.

In Fig. 4(a), the P}’ (m, ) obtained are shown (in solid lines)
for the four distributions from Fig. 3. They are validated by
independent data from Gillespie simulations [84] of these
models (see SM Sec. IV [77]).

The differences of the curves in Fig. 4(a) reflect the dif-
ferences in the “extrinsic” factor (namely, the division time
statistics). Note that not just a few moments but the full distri-
butions g(#,) contribute through W; ; and F+(" )(1) to different
PY(my).

Further insight on cyclo-stationary fluctuations comes
from study of second- and third-order cumulants. Since the
necessary quantities Ff) (D), Ff) (1), and F f)(l) appearing
in Egs. (13)=(15) may be exactly solved in terms of Wy ;
[see Egs. (36), (37), and (38) in Sec. IIB of SM [77]], one
may study the CV? and skewness for any g(t,). The explicit
formula for

12w, |2 v
V=l g —2 LSy T2l
Yo km 1= 5V,
N Wi W0
5.
(1= 2 ¥22)(1 = 3%11)

(24)

In Fig. 4(b) we see that the CV?of P{¥(my ) vary monoton-
ically with mean division times (t;), and for all distributions
approach the asymptotic value of 2y,,/k,, [= 0.2 in Fig. 4(b)]
for large (,). This follows immediately for the Dirac-delta dis-
tribution from Eq. (24), as W j = e /7T (1 — e T )=/ —
for any j # 0, and — 1 for j = 0, at large T'. For other g(t,),
the times #, around the mean dominate the integral of W ; at
large (t), implying similar asymptotic values. In Fig. 4(b) we
observe that slower is the decrease of CV? of mRNA count,
when higher is the CV? of g(t,) (see the hierarchy in Fig. 3),
as slower are the corresponding approaches of Wy ; to the
asymptotic values. The CV? can never be nonmonotonic with
(t,), since the contributing terms 1/F{" (1), F(1)/[F" (1)]?
add with the same sign and each monotonically decreases.

In Fig. 4(c) we see a similar asymptotic approach of skew-
ness to a value (2y,,/k.,)"/? (= 0.447 in the figure), for any
g(t5). This follows from the formula of skewness in Eq. (57) in
SM [77], based on the arguments given above that W ; — 0
for j #0, and — 1 for j = 0 at large (t;) for any g(z;). A
striking feature of the skewness formula is that it may exhibit
nonmonotonic behavior if the degradation rate (i.e., y;,) is suf-
ficiently small. Observe that although curves in Fig. 4(c) are
monotonic for y,, = 0.05, they are nonmonotonic in Fig. 4(d)
for smaller y,, = 0.01 before asymptotically flattening. The
reason is that, in contrast to CV?2, in the skewness formula,
some of the terms dependent on g(z;) have a plus sign while
some have a minus sign. Hence if the group of terms with the
minus sign are relatively slower in attaining their asymptotic
value in comparison to the group of terms with a positive sign,
the value of skewness can get depressed and then again rise as
a function of (¢;) [as in Fig. 4(d)]; this effect will be magnified
if y,, is small and CV? of g(t,) is high, both delaying the
asymptotics. We will show below this interesting feature in
skewness is also present for the skewness of protein counts,
due to similar reasons.

We have also studied the analytical probability distribu-
tions P*(m_) of mRNA count just before cell division and
compared with simulation data; see Fig. 1 in SM [77] for four
different g(z,).

V. CYCLO-STATIONARY DISTRIBUTIONS OF PROTEIN

In Sec. III of SM [77], the master equation for the bursty
production and degradation kinetics (see Fig. 2) of pro-
tein number n(¢), starting from n/_ at the beginning of the
cycle, is shown. The corresponding probability distribution
p(n, tln’) has a generating function F(q,t|n) ) = Yo d"
pln tlny) [27]:

1 —b(g — 1)e s
1-bg—1)

) x (14 (g — De )™,
(25)

F(q,tln;)=(

where a = k,,/y, (see SM Sec. IIT A [77]). The above equa-
tion has the same form as Eq. (5) with the function J# =

(%)a. Hence Eqgs. (6) and (7) are satisfied by

the generating functions Fi(gq) = ZZ:O q"= PP (ny), for the
cyclo-stationary distributions P{* of proteins. We show in SM
Sec. III B [77] that the series expansion of F} (q) about g = 1
[see Eq. (9)] yields the following exact recursion relation for
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FIG. 5. (a) Cyclo-stationary distribution P{*(ny) of protein
count, for the four g(z,) shown in Fig. 3 (corresponding colors being
the same). The corresponding variation of CV? (b) and skewness
(c) with varying (t;) are shown. (d) The distribution P*(n_) just
before division. Here k,, = 0.5, b = 2, and y, = 0.01. The solid lines
follow analytical formulas, while empty symbols represent KMC
simulation data (using 5 x 107 histories).

FY(1):
ko k=l B
FP(1) = ak! ZZ(—I)’7
1=0 j=0

Lijla+k—1—j—DFED1)
(a— DUk —1— j)!

. (20)

where Ly ; = [i~ di,g(ty)e™ "7 a function of (I + j)y,, is
the Laplace transform of the distribution g(z,).

Equation (26) is the key exact result—it is reducible to the
form in Eq. (10) by combining terms. The coefficients F. Jﬁj (1)
can be enumerated using Eq. (26) once the Laplace transform
of the random cell cycle distribution g(#;) is known. But
solving Eq. (26) in an analytical closed form is challenging.
Hence, we used the numerical protocol (Sec. IV of SM [77])
to enumerate the F f_k)(l) from Eq. (26). The coefficients were
then used along with Borel summation method (see Sec. IV
of SM [77]) for quicker convergence of the series in Egs. (11)
and (12) to obtain the cyclo-stationary distributions P{*(n.).
In Figs. 5(a) and 5(d), the protein distributions P{*(n; ) and
P*(n_) (in solid lines) are well matched by simulation data
(in symbols).

The exact F f)(l), Ff)(l), and Ff)(l), are provided in
Egs. (63), (64), and (65) in SM Sec. III C [77] in terms of L;.
The exact CV? and sfor any g(t,) [using Eqs. (13)—(15)] for the
protein count at cell birth, follow from those. For convenience
of the user, we provide the following:

2L,
ab(1 —Ly)

2-L)

CV?=—1+
a4 —Ly)(1 —Ly)

2—-L;
X [ la(l = 2Ly + Lr) + (1 — L»)]
1-L

+2a(L; — LZ)}. 27)

Like in the case of mRNA, the CV? of n,. are hierarchical,
with respect to the degree of fluctuations in g(t,) [Fig 5(b)],
but they all approach a common asymptotic value. As all
L; — 0 at large (t;) for any g(z,), from Eq. (27) we con-
clude that CV? — (b+ 2)/ab (= 0.04 in the figure). Here
too the additive terms 1/F"(1), F&(1)/[F"(1)]? in CV?
each monotonically decreases, implying CV? to be always
monotonic with {¢). In Sec. VIC, we analyze the contribu-
tions of intrinsic and extrinsic factors separately to CV? in
Eq. 27).

Since the degradation rate y, of proteins are typically low,
the terms in the skewness expression will take long time to
reach their asymptotic value 2(1 + b)/+/ab(2 + b) [= 0.3 in
Fig. 5(c)] which follows by setting L; — 0 in Eq. (95) of SM
[77]. Because of the relative difference of times of approach
to the asymptotics of the groups of positive and negative terms
[Eqg. (95) of SM [77]), we have a nonmonotonic behavior in
the skewness as a function of (#); see Fig. 5(c).

VI. VARIOUS EXTENSIONS OF THE ABOVE RESULTS
A. Cyclo-stationary distributions at any cell age 7

Although so far we have discussed the cyclo-stationary
distribution of copy numbers in the new-born cells [P} (y; )]
and cells prior to division [P**(y_)], the cyclo-stationary dis-
tribution P*(y, 7) of cells at any arbitrary “age” t before the
next cell division may be derived by using the P{*(y;) as
follows:

Py, T) =Y PYOPO, Tlyy). (28)

Y+
Using its generating function G(g, 1) = Zy ¢P*(y, t) =
>, %G;k)(r), we derive (see SM Sec. V [77])

L (k) (=D
Poym)=) (y) %Gﬁ,")(f)- (29)
k=y :

For the mRNAs (i.e., y = m), with F® (1) from Eq. (21),

k

K\ (ke \ : :
GR()=> ( ) <_’"> FO (e (1 — e7rm™ed,
J/\v

j=0 "
(30)
while for proteins (i.e., y = n) with F®)(1) from Eq. (26),
k k=l
GP(r)=ak! Yy Y (=1 ieHimr
=0 j=0

(a+k—1—j—DIFL1)
(a— DUk —1—j)!

See SM [77]) for details of the calculation. Thus, we have the
analytical formulas for P**(y, t) given by Eq. (29), along with
Egs. (30) and (31). Note that when 7 — 0, G — F{(1)
and hence P*(y, 1) — P{(y4+) (Eq. (11)) as expected. In
Fig. 6 we show the plots of the theoretical P*(m, t) and
P¥(n, 7) at three different ages, using the Erlang distribution
for the g(t;). We performed independent single-lineage sim-
ulations and sampled 5 x 10° copy numbers at particular cell

€29
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FIG. 6. Cyclo-stationary distributions P*(m, ) of mRNA (m)
and P*(n, t) of protein (n), at three cell ages (tr = 0, 5, and 10 min).
The solid lines are from analytical theory [Eq. (29)] and circular
symbols are obtained by averaging counts of multiple single lineage
cells of specific ages. The g(,) follows the Erlang distribution from
Fig. 3. The parameters for mRNA are k,, = 0.5, y, = 0.05, and
protein are k,, = 0.5, b = 2, and y, = 0.01.

ages 7 in the cyclo-stationary state, and used that to obtain nu-
merical P¥*(m, t) and P*(n, t) (see circular symbols), which
match the theoretical curves in Fig. 6.

B. Age-averaged cyclo-stationary distributions

To obtain a distribution averaged over cell age, one would
require a suitable cell-age distribution. For “constant” cell
division times, the single-lineage age distribution is uniform
over T € [0, T] [47,48,63], while for a population of expo-
nentially growing cells itis ¢(7) = % 21=C/D forr € [0, T]
and has been used in various works [31,43,44,48,85].

However, we need the age distributions for random cell
division times with a given g(,). Recently, the general time-
dependent cell age distribution for exponentially growing
populations has been studied by Jafarpour et al. [86]. We are
interested in the cyclo-stationary (or “steady”) state limit and
binary symmetric division, in which case the age distribution
of the exponential population is ¢(7) = 2v,,e™ """ froo g(ty)dt
with v,, given implicitly by 2 fooo e i g(t,)dt, = 1, while
the single-lineage age distribution is ¥ (7) = froo g(t,)dt,/ (ts)
[85-87]. For example, for the Erlang distribution [Eq. (16)],
VU = )»(2% —1) and ¢(r) =2v,e ""T'(N, tA)/T'(N) and
() =T, tr)/(T'(N){t,)). These theoretical formulas are
compared in Fig. 7(a) to the simulation data of age distribu-
tions (in symbols) of a population and of single lineage: the
population distribution decays faster compared to the single
lineage due to the additional exponential factor.

In Fig. 7(b) we first plot (see brown curve) the
lineage “age-averaged” protein distribution P*(n) =
fooo dty (t)P*(n, T), by averaging the lineage “age-specific”
protein distribution P**(n, t) [Eq. (29)] over the lineage age
distribution ¥ (7); this is supported by lineage simulations
(brown symbols). Randomly sampled protein counts from
cells of any age of a simulated exponentially growing
population (in the steady state) give the age-independent
protein distribution P33 (n) of the population [see green
symbols in Fig. 7(b)]. As we do not have a theoretical
age-specific protein distribution in a population, we give an
approximate P*(n) = fooo dtp(t)P*(n, 1) (see solid black
curve Fig. 7(b)), by averaging the lineage P**(n, ) [Eq. (29)]
over the population age distribution ¢(7); the curve P%(n) is

closer but different from By, (n) as expected.

0.08 :
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FIG. 7. (a) Steady-state age distributions ¢(7) for a population
(black) and v (r) for single lineage (blue) against t. Theoreti-
cal curves are solid lines, while simulation data are in symbols.
(b) Age-averaged protein distributions, P;*(n) (brown curve) for sin-
gle lineage (theoretical, brown curve; simulation, brown symbols),
theoretical P**(n) (black curve), and simulated Plfgp(n) for an expo-
nentially growing population (green circles). The g(z,) used is Erlang
distributed with N = 3 [Eq. (16) and Fig. 3], and the model parame-
ters for protein expression are k,, = 0.5, b = 2, and y, = 0.01.

C. Comparing the contributions to noise in protein copy
number from intrinsic and extrinsic sources

In the expression of CV? for proteins at cell birth
[Eq. (27)] the noise from gene expression, binomial parti-
tioning, as well as random cell division times all contribute.
Note that mean (n;) = ab(l — L;)/(2 — L;) is independent
of whether the processes are deterministic or stochastic. If we
wish to exclude the contribution of the partitioning noise, then
the Binomial distribution may be replaced by a delta function
[in Eq. (3)] such that ny = n_/2 in every cycle. A separate
calculation done for this case in SM Sec. VI [77] shows that
(g — 1)/2 in Eq. (6) for the generating function is replaced by
(/g — 1), and subsequently yields

_ o 20e-Ly
ab(4 — Lz)(l — L])’

CVigipr =CV? (32)
where CV? is the total noise [from Eq. (27)]. The CVZ,_ pr
has a contribution from gene expression (GE) and division
time (DT) randomness. Thus, the noise from binomial par-
titioning (BP) is

22— Ly)

2 __
Vir = ab(4 — L)1 — L) (33)

Note that CVBZP is dependent on g(t,), although mildly; see
Table I for the different cases.

If in addition to removal of partitioning noise (i.e., setting
ny = n_/2), the gene expression is also deterministic, then
the protein number at any time n = n/,e™"" + ab(l — e™"")
(with initial count 7’ ). In this case, the argument of F, (-) on

TABLE 1. Noise in n,, for (t,) = 20 min, a = 50, b = 2.

g(t) cv? CV3 CV:, CVZ,
Dirac delta 0.149 0.039 0 0.110
Beta exponential 0.174 0.039 0.025 0.110
Erlang (N = 3) 0.229 0.040 0.078 0.111
Exponential 0.372 0.042 0.217 0.113
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FIG. 8. (a) Plots of different g(z,) following Eq. (19), with var-
ious values of oy as shown. We have By = 0.035 min~!, op =
0.0052 min~" for all of them. (b) The corresponding cyclo-stationary
distributions P{*(n,.) [following the same colors as in (a)] are shown.
The parameters for protein gene expression are b = 2, k,, = 0.3, and

¥y = 0.01.

the right-hand side of Eq. (6) is replaced by (/)¢ """ (see SM
Sec. VI [77]), and the calculation gives

. 2—1L)
YVor =1t G0 -1

2- L,
x [1——L1(1 — 2Ly + L) +2(L; — Lz)}. (34)

The CV}3; is purely the extrinsic noise contribution coming
from random variations in cell division times; hence if g =
8(t; — T), then L, = L?, and hence CV}3; = 0 in Eq. (34) as
expected. Also see Table I for other cases. The CV? in Eq. (27)
is in excess of CV}2; [Eq. (34)] by two terms. Comparing with
Eq. (32), we have noise contribution from gene expression to
total CV? as

2-L)2-Ly)
ab(l1 —L)(4 — L)

2—L)’( =Ly

CV:. = )
cE a(l — L)*(4 — Ly)

(35)

Note CVéE is dependent on g(#), although mildly; see Table I
for the different cases.

Finally percentage contributions of CV;2,, CV3;, and CVZ,
to the total CV? depends on g(t;). From Table I, for the Beta
exponential, they are, respectively, 23%, 14%, and 63%, for
the Erlang, they are respectively, 18%, 34%, and 48%, and for
the exponential they are respectively, 12%, 58%, and 30%.
Thus, as division time noise rises, the relatively higher contri-
bution of gene expression noise is offset by it. This qualitative
trend is expected to remain the same, even if the percentage
numbers presented here change with the values of a and b.

Here we have presented the results for the protein, but
following the same type of calculations, one may derive cor-
responding results for the mRNA and compare with the full
CV? from Eq. (24).

D. Division time distributions due to fluctuating threshold,
and effect on cyclo-stationary protein statistics

In Sec. IIT we mentioned division time distributions arising
from threshold crossing scenarios: Eq. (18) due to growth rate
heterogeneity but fixed threshold, and Eq. (19) due to both
growth rate heterogeneity and threshold fluctuations. Partly to
demonstrate the applicability of our results to these cases too,
and partly to see the effect of threshold fluctuations, we study
them here.

0.2 @ 1 0.06 o (b)
+
~0.15 : _ "
=10.04 + +
(ﬁv 0.1+ 0 5\; * _e—0 4
n+ -€= ad + —
z 02 «£=0.25
e
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+ +

FIG. 9. Effect of correlation in cell cycle times on the cyclo-
stationary distributions of (a) mRNA and (b) protein. The analytical
predictions in the uncorrelated case are in solid lines. The symbols
are from KMC simulations with various degrees of correlation indi-
cated by the parameter .

In Fig. 8(a) for chosen By = 0.035min""', o5 = 0.0052
min~' (with mean division time ~20 min), three g(t,) distribu-
tions are shown with different widths oy of the size threshold
in Eq. (19); parameters are in the ballpark of Ref. [72]. The
corresponding cyclo-stationary protein distributions Py ()
in new-born cells for the three cases are shown in Fig. 8(b).
The copy number distributions broadens relatively slowly as
threshold fluctuations (oy) rise and g(z;) quickly becomes
broader.

E. Effect of correlations in cell cycle times

For deriving the basic recursive equations involving the
cyclo-stationary distributions [Eqs. (3) and (4)] we had as-
sumed that the random cell cycle times are uncorrelated,
e, g2ts, ts,_, ) = 8(t5,)8(ts,_, ). Given the complexities of cell-
cycle control, this assumption may have to be relaxed. For
example, recent work on specific human cell lines shows
random cell-cycle times that are not correlated between the
mother and daughter cells [88]. Interestingly, data showed
modest correlations between the cell-cycle times of daughter
cells, but this correlation is lost between cousin pair of cells
[88]. Here we study through kinetic Monte Carlo simula-
tions the effect of correlated cell cycle times. Correlation is
achieved by choosing the time of the ith (i > 1) cycle ¢, in
terms of the (i — 1)th cycle time ¢, | in the following way:

t, =(1—¢) xErl+¢& xtg, (36)

where Erl is a random time chosen for the ith cycle, following
the Erlang distribution in Fig. 3. For the first cycle #;, = Erl.
By construction, the mean of the correlated ¢, distribution
remains the same as the Erlang distribution. Note that ¢ is the
correlation coefficient between successive generation times,
and by tuning it, we may vary the degree of correlation.
In Figs. 9(a) and 9(b), we show the corresponding cyclo-
stationary distributions of mRNA and protein. With arise of ¢,
both distributions (in symbols) show some deviation (although
not significant) from the uncorrelated analytical distributions
(solid lines) that we have derived in this paper. The departure
is more pronounced for protein than mRNA.

A natural way that correlations arise in generation times
is through cell-size controlled division. For example, within
the “adder” mechanism, mother-daughter generation times are
known to have negative correlations [61,89]. Here we test how
our theory of independent generation times compares with
simulations of an adder model with correlated cell division
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FIG. 10. (a) Cyclo-stationary distribution of protein count at
birth, for correlated division times arising from a cell size-controlled
“adder” model (x symbols), and for independent division times from
our theory (solid line) with g(z,) in Eq. (37). The parameters for the
adder model are o = 10, A = 10, 8 = 0.05, while for the protein
expression are b =2, k,, = 0.5, and y, = 0.01. (b) Histogram of
numerical g(;) obtained from randomized generation times of the
“adder” model, and the theoretical g(z,) from Eq. (37) (solid line).

times. In the simulated model, in each generation, the initial
cell size s, of a new-born cell grows exponentially (at rate
B) by adding a random amount A drawn from a Gamma
distribution P;(A) = F(‘Z:;A(%)afl exp(—%) with mean A,
such that generation time ¢, at division is given by s, + A =
sp exp(Bty) [62]; the intial size of the next generation s}, is ob-
tained by equal partitioning of s, + A. We numerically found
the mother-daughter generation time correlation coefficient
to be —0.25 (as expected [89]). We do a parallel simula-
tion of a bursty protein production (model in Sec. III) and
binomial partitioning, following the sequence of correlated
generation times provided by the adder cell-size model; the
distribution of protein count n, at birth thus obtained in the
cyclo-stationary state is shown with symbols in Fig. 10(a).

Next we take the correlated generation time sequence
from the above adder model simulations, and randomize
those and obtain a numerical g(z;) [see the histogram in
Fig. 10(b)]. Corresponding to these data, a theoretical g(t,) =
S P(t]sp)QCsp)dsy with Py(tlsy) = Pa(A)Y A2 o y,.
The distribution Q(sp) of s, is hard to derive exactly, so we
approximate it to be a Gamma distribution like P;(A), but
satisfying the known constraints (s,) = A and C Vj =CV}/3,
for adder models [89]. This gives after a few simple steps

)= I'(40)3%* BePts (Pl — 1)1
805) = R T Ga) (P + 2y

, (37

which [shown by the solid line in Fig. 10(b)] matches quite
well the numerical g(#;). Using the above g(t;) [Eq. (37)] in
Egs. (26) and (11), we get our theoretical P{*(ny) [solid line
in Fig. 10(a)]. We observe that our theory for independent
generation times gives quite close results to the simulated
P (ny) for the correlated generation times obtained through
cell size control. Although surprising, this is consistent with
the absence of significant deviation in Fig. 9(b) for correlation
coefficient £ = 0.25 (same value) in the model of Eq. (36).

VII. CONCLUDING DISCUSSION

Analysis of single-cell transcriptomic and proteomic data
requires an understanding of stochastic cellular processes that
influence the variability of copy numbers of mRNA and pro-
teins from cell to cell. Years of theoretical work on various

models of gene expression, along with additional complexities
of partitioning noise during division, dynamic cell growth,
and gene duplication, have already enriched the means for
analyzing the data. The key contribution of this paper is to
present a method to incorporate the non-negligible aspect of
noise in cell cycle times, within the evolving broader picture.

We have studied theoretically copy number statistics in
cells obtained after many cycles of cell division, each in-
volving binomial partitioning of copy numbers, when a
cyclo-stationary condition has been attained. For any random
(but uncorrelated) cell division times, we have presented a
method to obtain exact series representations of the distri-
butions of copy numbers. This is a significant theoretical
advancement, as analytical solutions were known only for de-
terministic division times and a specific type of random time
distribution (namely, the Erlang). Moreover treatments of the
Erlang distribution relied on steady-state assumption of every
cell cycle stage, and hence could only get cell age-averaged
statistics. Our method here makes no such assumption and
gives exact distributions at any cell age, and also leaves the
scope of obtaining the age-averaged result using the suitable
cell age distribution [85]. We have demonstrated that mild
correlations in division times of successive cycles would not
cause strong departure from the analytical results to have
obtained for the uncorrelated case. Extension of the current
work by developing efficient summation methods of the for-
mal series we present would be a fruitful direction to pursue
in future.

The following results follow as consequences of random
cell cycle times. Along with the general series forms of
cyclo-stationary distributions of mRNA and proteins for any
random cell cycle distribution, we specifically showed that for
fixed cycle times the mRNA distribution is Poisson. Thus,
the Poisson form, well known for constitutive transcription,
stays preserved after accounting for partitioning noise as long
as the cell division time is a constant. Hence, the departure
of the mRNA distribution from Poisson is a signature of the
effect of cell cycle time variability (in cases where promoter
regulation is absent). Next, the skewness has nonmonotonic
variation with mean division time, if fluctuations in division
time are strong, and degradation rate of copy numbers are
weak. This behavior of skewness may serve as a signature of
high variability of cell cycle times. In comparison, we found
that CV? never exhibits nonmonotonicity, and it is high in
consonance with higher fluctuations in cell division times.
Splitting the net CV? into contributions from intrinsic and
extrinsic sources, we showed in Table I that with rising fluc-
tuations in division times, its contribution may be substantial
(rising to around 50%) in comparison to noise due to gene
expression and binomial partitioning.

Although the models of gene expression that we analyze
are the basic ones for constitutive production, they demon-
strate the new method with clarity. Further complexity in
models of gene expression have to be introduced through the
corresponding generating functions [analogous to Eq. (5)].

Although cell-size control was not elaborately treated in
the paper, in Sec. VIE we also simulated an adder model
that leads to mother-daughter generation times having nega-
tive correlations, and we obtained a cyclo-stationary protein
distribution influenced by such correlated cell cycle times.
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We found a very small deviation of this distribution from
the theoretical distribution for independent generation times.
To obtain analytically exact expressions however, we require
further development of the framework presented here to theo-
retically incorporate intergenerational correlation in division
times. Protein distributions in populations of exponentially
growing cells and their relationship with lineage distribu-
tions we have derived can be studied in future work, like
other models [48,90]. We have also not considered the bidi-
rectional crosstalk of gene expression and generation times.
Here we have considered proteins which do not participate
in cell size or cell cycle regulation, and so their expression
did not directly influence the generation times. On the other
hand generation time is related to cell growth rate and cell
growth may influence both volume-dependent gene expres-
sion rates [50] and the dilution rate of protein concentration
[91]. Effect of cell volume may be considered in effective
concentration-based models of gene products [50,75,91,92],
where the average concentration remains the same after di-
vision although average volume and copy numbers become
half. More details of different cell-cycle stages [93], DNA
duplication, and dosage compensation [48,49] are realistic
aspects which need to be considered in future within more
complete modeling. Each of these extensions may follow the
core idea presented here, but are expected to be lengthy and
interesting calculations and hence left for future study.

We made an interesting connection between two entirely
different biophysical problems, namely, the problem of cell
division and that of synaptic vesicle release triggered by ac-
tion potentials [80]. The underlying mathematical structure of
these two problems is similar, as both involve repeated cycles
of growth (or replenishment) and partitioning (or release). Yet
the specific results are different as the details of the process of
gene expression differs from that of the stochastic docking of
synaptic vesicles.

Stochastic gene expression plays a critical role in a num-
ber of biologically and biomedically significant processes.
Notable examples include stochastic cell fate determina-
tion in both bacteria and multicellular organisms [94,95],
spontaneous prophage induction in bacteria [96,97], and the
random expression of proteins that confer antibiotic resistance
in bacteria [98] or chemotherapy resistance in cancer cells
[99,100]. Analytical models of protein expression are thus
potentially very useful for analyzing noise-driven processes
in biology. Previous models for the distribution of mRNA and
protein levels in cells did not fully account for the contribu-
tions from randomness in cell division times in conjunction
with binomial partitioning. In this paper we incorporate these
sources of extrinsic noise into an analytical exact theory of
mRNA and protein gene expression. We anticipate that the
results would have wide applicability in biomedical and bio-
logical research for systems where noise in cell cycle duration
plays a functional role.

ACKNOWLEDGMENTS

D.D. acknowledges the visitor program of MPI-PKS Dres-
den, where a part of this work was done, and thanks K. Rijal
and Madan Rao for discussions. We also thank one referee
for very useful suggestions. S.Y.A. acknowledges IIT Bom-
bay for financial support through the institute’s postdoctoral
fellowship. A.S. acknowledges support from NIH-NIGMS via
Grant No. R35GM148351.

DATA AVAILABILITY

The data that support the findings of this article are not
publicly available. The data are available from the authors
upon reasonable request.

[1] A.Raj, P. van den Bogaard, S. A. Rifkin, A. van Oudenaarden,
and S. Tyagi, Imaging individual mRNA molecules using mul-
tiple singly labeled probes, Nat. Methods 5, 877 (2008).

[2] A. Raj and A. Van Oudenaarden, Nature, nurture, or chance:
Stochastic gene expression and its consequences, Cell 135,
216 (2008).

[3] D. Lovatt, B. K. Ruble, J. Lee, H. Dueck, T. K. Kim, S. Fisher,
C. Francis, J. M. Spaethling, J. A. Wolf, M. S. Grady et al.,
Transcriptome in vivo analysis (TIVA) of spatially defined
single cells in live tissue, Nat. Methods 11, 190 (2014).

[4] J. Cao, J. S. Packer, V. Ramani et al., Comprehensive single-
cell transcriptional profiling of a multicellular organism,
Science 357, 661 (2017).

[5] D. Mahdessian, A. J. Cesnik, C. Gnann et al., Spatiotemporal
dissection of the cell cycle with single-cell proteogenomics,
Nature (London) 590, 649 (2021).

[6] T. K. Suen, B. Al, and K. Placek, Cell-to-cell proteome vari-
ability: Life in a cycle, Sig. Transduct. Target Ther. 6, 229
(2021).

[7] A. Deloupy, V. Sauveplane, J. Robert, S. Aymerich, M. Jules,
and L. Robert, Extrinsic noise prevents the independent tun-

ing of gene expression noise and protein mean abundance in
bacteria, Sci. Adv. 6, eabc3478 (2020).

[8] B. Munsky, G. Neuert, and A. van Oudenaarden, Using gene
expression noise to understand gene regulation, Science 336,
183 (2012).

[9] O. Padovan-Merhar and A. Raj, Using variability in gene ex-
pression as a tool for studying gene regulation, WIREs Syst.
Biol. Med. 5, 751 (2013).

[10] M. M. Saint-Antoine and A. Singh, Network inference in
systems biology: Recent developments, challenges, and appli-
cations, Curr. Opin. Biotechnol. 63, 89 (2020).

[11] S. M. Shaffer, M. C. Dunagin, S. R. Torborg et al,
Rare cell variability and drug-induced reprogramming as a
mode of cancer drug resistance, Nature (London) 546, 431
(2017).

[12] K. S. Farquhar, D. A. Charlebois, M. Szenk, J. Cohen, D.
Nevozhay, and G. Baldzsi, Role of network-mediated stochas-
ticity in mammalian drug resistance, Nat. Commun. 10, 2766
(2019).

[13] I. El Meouche, P. Jain, M. K. Jolly, and J.-P. Capp, Drug
tolerance and persistence in bacteria, fungi and cancer cells:

043002-11


https://doi.org/10.1038/nmeth.1253
https://doi.org/10.1016/j.cell.2008.09.050
https://doi.org/10.1038/nmeth.2804
https://doi.org/10.1126/science.aam8940
https://doi.org/10.1038/s41586-021-03232-9
https://doi.org/10.1038/s41392-021-00655-8
https://doi.org/10.1126/sciadv.abc3478
https://doi.org/10.1126/science.1216379
https://doi.org/10.1002/wsbm.1243
https://doi.org/10.1016/j.copbio.2019.12.002
https://doi.org/10.1038/nature22794
https://doi.org/10.1038/s41467-019-10330-w

ALI SARAN, PRASAD, SINGH, AND DAS

PRX LIFE 3, 043002 (2025)

Role of non-genetic heterogeneity, Transl. Oncol. 49, 102069
(2024).

[14] C. A. Chang, J. Jen, S. Jiang et al., Ontogeny and vulner-
abilities of drug-tolerant persisters in HER24 breast cancer,
Cancer Discov. 12, 1022 (2022).

[15] 1. El Meouche, Y. Siu, and M. J. Dunlop, Stochastic expression
of a multiple antibiotic resistance activator confers transient
resistance in single cells, Sci. Rep. 6, 19538 (2016).

[16] A. Singh and L. S. Weinberger, Stochastic gene expression as
amolecular switch for viral latency, Curr. Opin. Microbiol. 12,
460 (20009).

[17] P. S. Swain, M. B. Elowitz, and E. D. Siggia, Intrinsic and ex-
trinsic contributions to stochasticity in gene expression, Proc.
Natl. Acad. Sci. USA 99, 12795 (2002).

[18] J. M. Raser and E. K. O’Shea, Control of stochasticity in
eukaryotic gene expression, Science 304, 1811 (2004).

[19] A. Raj, C. S. Peskin, D. Tranchina, D. Y. Vargas, and S. Tyagi,
Stochastic mRNA synthesis in mammalian cells, PLoS Biol.
4, €309 (20006).

[20] L. Cai, N. Friedman, and X. S. Xie, Stochastic protein expres-
sion in individual cells at the single molecule level, Nature
(London) 440, 358 (2006).

[21] Y. Taniguchi, P. J. Choi, G.-W. Li, H. Chen, M. Babu, J. Hearn,
A. Emili, and X. S. Xie, Quantifying E. coli proteome and
transcriptome with single-molecule sensitivity in single cells,
Science 329, 533 (2010).

[22] A. Sanchez and I. Golding, Genetic determinants and cellu-
lar constraints in noisy gene expression, Science 342, 1188
(2013).

[23] G. Storz, J. A. Opdyke, and A. Zhang, Controlling mRNA sta-
bility and translation with small, noncoding rnas, Curr. Opin.
Microbiol. 7, 140 (2004).

[24] M. Thattai and A. Van Oudenaarden, Intrinsic noise in gene
regulatory networks, Proc. Natl. Acad. Sci. USA 98, 8614
(2001).

[25] J. Paulsson, Models of stochastic gene expression, Phys. Life
Rev. 2, 157 (2005).

[26] A. Sanchez, H. G. Garcia, D. Jones, R. Phillips, and J. Kondeyv,
Effect of promoter architecture on the cell-to-cell variability in
gene expression, PLoS Comp. Biol. 7, 1001100 (2011).

[27] V. Shahrezaei and P. S. Swain, Analytical distributions for
stochastic gene expression, Proc. Natl. Acad. Sci. USA 105,
17256 (2008).

[28] P. Bokes, J. R. King, A. T. Wood, and M. Loose, Exact and
approximate distributions of protein and mRNA levels in the
low-copy regime of gene expression, J. Math. Biol. 64, 829
(2012).

[29] A. Singh, C. A. Vargas, and R. Karmakar, Stochastic analy-
sis and inference of a two-state genetic promoter model, in
2013 American Control Conference (IEEE, New York, 2013),
pp- 4563-4568.

[30] A. Singh, B. S. Razooky, R. D. Dar, and L. S. Weinberger,
Dynamics of protein noise can distinguish between alternate
sources of gene-expression variability, Mol. Syst. Biol. 8, 607
(2012).

[31] Y. Wang, Z. Yu, R. Grima, and Z. Cao, Exact solution of a
three-stage model of stochastic gene expression including cell-
cycle dynamics, J. Chem. Phys. 159, 224102 (2023).

[32] E. D. Hawkins, J. F. Markham, L. P. McGuinness, and
P. D. Hodgkin, A single-cell pedigree analysis of alternative

stochastic lymphocyte fates, Proc. Natl. Acad. Sci. USA 106,
13457 (2009).

[33] R. Tsukanov, G. Reshes, G. Carmon, E. Fischer-Friedrich,
N. S. Gov, L. Fishov, and M. Feingold, Timing of Z-ring
localization in Escherichia coli, Phys. Biol. 8, 066003 (2011).

[34] G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, Timing
the start of division in E. coli: A single-cell study, Phys. Biol.
5, 046001 (2008).

[35] A. H. K. Roeder, V. Chickarmane, A. Cunha, B. Obara, B. S.
Manjunath, and E. M. Meyerowitz, Variability in the control
of cell division underlies sepal epidermal patterning in Ara-
bidopsis thaliana, PLoS Biol. 8, e1000367 (2010).

[36] E. B. Stukalin, I. Aifuwa, J. S. Kim, D. Wirtz, and S. X.
Sun, Age-dependent stochastic models for understanding pop-
ulation fluctuations in continuously cultured cells, J. R. Soc.
Interface 10, 20130325 (2013).

[37] C. A. Yates, M. J. Ford, and R. L. Mort, A multi-stage repre-
sentation of cell proliferation as a Markov process, Bull. Math.
Biol. 79, 2905 (2017).

[38] P. Thomas, Intrinsic and extrinsic noise of gene expression in
lineage trees, Sci. Rep. 9, 474 (2019).

[39] D. Huh and J. Paulsson, Non-genetic heterogeneity from
stochastic partitioning at cell division, Nat. Genet. 43, 95
(2011).

[40] D. Huh and J. Paulsson, Random partitioning of molecules
at cell division, Proc. Natl. Acad. Sci. USA 108, 15004
(2011).

[41] C.J. Zopf, K. Quinn, J. Zeidman, and N. Maheshri, Cell-cycle
dependence of transcription dominates noise in gene expres-
sion, PLoS Comput. Biol. 9, €1003161 (2013).

[42] N. A. Cookson, S. W. Cookson, L. S. Tsimring, and J.
Hasty, Cell cycle-dependent variations in protein concentra-
tion, Nucleic Acids Res. 38, 2676 (2010).

[43] O. G. Berg, A model for the statistical fluctuations of protein
numbers in a microbial population, J. Theor. Biol. 71, 587
(1978).

[44] D. R. Rigney, Stochastic model of constitutive protein levels
in growing and dividing bacterial cells, J. Theor. Biol. 76, 453
(1979).

[45] F. Bertaux, S. Marguerat, and V. Shahrezaei, Division rate, cell
size and proteome allocation: Impact on gene expression noise
and implications for the dynamics of genetic circuits, R. Soc.
Open Sci. 5, 172234 (2018).

[46] R. Dessalles, V. Fromion, and P. Robert, Models of protein
production along the cell cycle: An investigation of possible
sources of noise, PLoS ONE 15, 0226016 (2020).

[47] M. Soltani and A. Singh, Effects of cell-cycle-dependent ex-
pression on random fluctuations in protein levels, R. Soc. Open
Sci. 3, 160578 (2016).

[48] C. H. L. Beentjes, R. Perez-Carrasco, and R. Grima, Exact
solution of stochastic gene expression models with bursting,
cell cycle and replication dynamics, Phys. Rev. E 101, 032403
(2020).

[49] Z. Cao and R. Grima, Analytical distributions for detailed
models of stochastic gene expression in eukaryotic cells, Proc.
Natl. Acad. Sci. USA 117, 4682 (2020).

[50] C. Jia, A. Singh, and R. Grima, Concentration fluctuations
in growing and dividing cells: Insights into the emergence
of concentration homeostasis, PLoS Comput. Biol. 18, 1
(2022).

043002-12


https://doi.org/10.1016/j.tranon.2024.102069
https://doi.org/10.1158/2159-8290.CD-20-1265
https://doi.org/10.1038/srep19538
https://doi.org/10.1016/j.mib.2009.06.016
https://doi.org/10.1073/pnas.162041399
https://doi.org/10.1126/science.1098641
https://doi.org/10.1371/journal.pbio.0040309
https://doi.org/10.1038/nature04599
https://doi.org/10.1126/science.1188308
https://doi.org/10.1126/science.1242975
https://doi.org/10.1016/j.mib.2004.02.015
https://doi.org/10.1073/pnas.151588598
https://doi.org/10.1016/j.plrev.2005.03.003
https://doi.org/10.1371/journal.pcbi.1001100
https://doi.org/10.1073/pnas.0803850105
https://doi.org/10.1007/s00285-011-0433-5
https://doi.org/10.1038/msb.2012.38
https://doi.org/10.1063/5.0173742
https://doi.org/10.1073/pnas.0905629106
https://doi.org/10.1088/1478-3975/8/6/066003
https://doi.org/10.1088/1478-3975/5/4/046001
https://doi.org/10.1371/journal.pbio.1000367
https://doi.org/10.1098/rsif.2013.0325
https://doi.org/10.1007/s11538-017-0356-4
https://doi.org/10.1038/s41598-018-35927-x
https://doi.org/10.1038/ng.729
https://doi.org/10.1073/pnas.1013171108
https://doi.org/10.1371/journal.pcbi.1003161
https://doi.org/10.1093/nar/gkp1069
https://doi.org/10.1016/0022-5193(78)90326-0
https://doi.org/10.1016/0022-5193(79)90013-4
https://doi.org/10.1098/rsos.172234
https://doi.org/10.1371/journal.pone.0226016
https://doi.org/10.1098/rsos.160578
https://doi.org/10.1103/PhysRevE.101.032403
https://doi.org/10.1073/pnas.1910888117
https://doi.org/10.1371/journal.pcbi.1010574

CYCLO-STATIONARY DISTRIBUTIONS OF MRNA ...

PRX LIFE 3, 043002 (2025)

[51] P. Fantes and P. Nurse, Control of cell size at division in
fission yeast by a growth-modulated size control over nuclear
division, Exp. Cell Res. 107, 377 (1977).

[52] I. G. Johnston and N. S. Jones, Closed-form stochastic solu-
tions for non-equilibrium dynamics and inheritance of cellular
components over many cell divisions, Proc. R. Soc. A: Math.
Phys. Eng. Sci. 471, 20150050 (2015).

[53] J. Ménnik, P. Kar, C. Amarasinghe, A. Amir, and J. Minnik,
Determining the rate-limiting processes for cell division in
Escherichia coli, Nat. Commun. 15, 9948 (2024).

[54] C. A. Vargas-Garcia, K. R. Ghusinga, and A. Singh, Cell size
control and gene expression homeostasis in single-cells, Curr.
Opin. Syst. Biol. 8, 109 (2018).

[55] G. Reshes, S. Vanounou, I. Fishov, and M. Feingold, Cell
shape dynamics in Escherichia coli, Biophys. J. 94, 251
(2008).

[56] A. Zilman, V. V. Ganusov, and A. S. Perelson, Stochastic
models of lymphocyte proliferation and death, PLoS ONE 5,
e12775 (2010).

[57] X. Liu, J. Yan, and M. W. Kirschner, Cell size homeostasis
is tightly controlled throughout the cell cycle, PLoS Biol. 22,
€3002453 (2024).

[58] C. Nieto, C. A. Vargas-Garcia, J. M. Pedraza, and A. Singh,
Mechanisms of cell size regulation in slow-growing Es-
cherichia coli cells: Discriminating models beyond the adder,
npj Syst. Biol. Appl. 10, 61 (2024).

[59] M. Campos, 1. V. Surovtsev, S. Kato, A. Paintdakhi, B.
Beltran, S. E. Ebmeier, and C. Jacobs-Wagner, A constant size
extension drives bacterial cell size homeostasis, Cell 159, 1433
(2014).

[60] C. Cadart, S. Monnier, J. Grilli, P. J. Sdez, N. Srivastava, R.
Attia, E. Terriac, B. Baum, M. Cosentino-Lagomarsino, and
M. Piel, Size control in mammalian cells involves modulation
of both growth rate and cell cycle duration, Nat. Commun. 9,
3275 (2018).

[61] S. Taheri-Araghi, S. Bradde, J. T. Sauls, N. S. Hill, P. A.
Levin, J. Paulsson, M. Vergassola, and S. Jun, Cell-size
control and homeostasis in bacteria, Curr. Biol. 25, 385
(2015).

[62] C. Nieto, C. A. Vargas-Garcia, and A. Singh, A generalized
adder for cell size homeostasis: Effects on stochastic clonal
proliferation, Biophys. J. 124, 1376 (2025).

[63] M. Soltani, C. A. Vargas-Garcia, D. Antunes, and A. Singh,
Intercellular variability in protein levels from stochastic ex-
pression and noisy cell cycle processes, PLoS Comput. Biol.
12, 1004972 (2016).

[64] R. Perez-Carrasco, C. Beentjes, and R. Grima, Effects of cell
cycle variability on lineage and population measurements of
messenger RNA abundance, J. R. Soc. Interface. 17, 20200360
(2020).

[65] C. Jia and R. Grima, Frequency domain analysis of fluc-
tuations of mRNA and protein copy numbers within a cell
lineage: Theory and experimental validation, Phys. Rev. X 11,
021032 (2021).

[66] C. Nieto, C. Augusto Vargas-Garcia, and A. Singh, A
moments-based analytical approach for cell size homeostasis,
IEEE Control Syst. Lett. 8, 2205 (2024).

[67] C. W. Gardiner, Stochastic Methods: A Handbook for the
Natural and Social Sciences, Springer Series in Synergetics,
Vol. 115 (Springer, Berlin, Heidelberg, 1985).

[68] K. R. Ghusinga, C. A. Vargas-Garcia, and A. Singh, A
mechanistic stochastic framework for regulating bacterial cell
division, Sci. Rep. 6, 30229 (2016).

[69] S. Iyer-Biswas, G. E. Crooks, N. F. Scherer, and A. R. Dinner,
Universality in stochastic exponential growth, Phys. Rev. Lett.
113, 028101 (2014).

[70] S. Iyer-Biswas, C. S. Wright, J. T. Henry, K. Lo, S. Burov,
Y. Lin, G. E. Crooks, S. Crosson, A. R. Dinner, and N. F.
Scherer, Scaling laws governing stochastic growth and divi-
sion of single bacterial cells, Proc. Natl. Acad. Sci. USA 111,
15912 (2014).

[71] L. Luo, Y. Bai, and X. Fu, Stochastic threshold in cell size
control, Phys. Rev. Res. 5, 013173 (2023).

[72] K. Biswas and N. Brenner, Universality of phenotypic distri-
butions in bacteria, Phys. Rev. Res. 6, L022043 (2024).

[73] D. Antunes and A. Singh, Quantifying gene expression vari-
ability arising from randomness in cell division times, J. Math.
Biol. 71, 437 (2015).

[74] J. Jedrak, M. Kwiatkowski, and A. Ochab-Marcinek, Exactly
solvable model of gene expression in a proliferating bacterial
cell population with stochastic protein bursts and protein par-
titioning, Phys. Rev. E 99, 042416 (2019).

[75] N. Friedman, L. Cai, and X. S. Xie, Linking stochastic dy-
namics to population distribution: An analytical framework of
gene expression, Phys. Rev. Lett. 97, 168302 (2006).

[76] 1. Golding, J. Paulsson, S. M. Zawilski, and E. C. Cox, Real-
time kinetics of gene activity in individual bacteria, Cell 123,
1025 (2005).

[77] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/ysj3-gkrr for derivation of the analytical cyclo-
stationary distributions of mRNA and protein counts and the
corresponding cumulants, a supporting simulation data, de-
scription of computational methods of series summation and
kinetic Monte-Carlo simulations, and analytical results on age-
specific distribution and deterministic limits of partitioning
and gene expression.

[78] A. D. Bird, M. J. Wall, and M. J. Richardson, Bayesian in-
ference of synaptic quantal parameters from correlated vesicle
release, Front. Comput. Neurosci. 10, 116 (2016).

[79] E. G. Krichan, A. U. Fischer, J. Franke, and E. Friauf,
Synaptic reliability and temporal precision are achieved
via high quantal content and effective replenishment: Au-
ditory brainstem versus hippocampus, J. Physiol. 595, 839
(2017).

[80] K. Rijal, N. I. C. Miiller, E. Friauf, A. Singh, A. Prasad, and
D. Das, Exact distribution of the quantal content in synaptic
transmission, Phys. Rev. Lett. 132, 228401 (2024).

[81] Z. Vahdat, O. Gambrell, J. Fisch, E. Friauf, and A. Singh,
Inferring synaptic transmission from the stochastic dynamics
of the quantal content: An analytical approach, PLoS Comput.
Biol. 21, e1013067 (2025).

[82] J. Yu, J. Xiao, X. Ren, K. Lao, and X. S. Xie, Probing gene
expression in live cells, one protein molecule at a time, Science
311, 1600 (2006).

[83] Interestingly, the first passage times of threshold crossing
of bacterial population size undergoing autocatalytic growth
follows the Beta exponential distribution, as was shown by
Dellbruck years before [101].

[84] D. T. Gillespie, Exact stochastic simulation of coupled chemi-
cal reactions, J. Phys. Chem. 81, 2340 (1977).

043002-13


https://doi.org/10.1016/0014-4827(77)90359-7
https://doi.org/10.1098/rspa.2015.0050
https://doi.org/10.1038/s41467-024-54242-w
https://doi.org/10.1016/j.coisb.2018.01.002
https://doi.org/10.1529/biophysj.107.104398
https://doi.org/10.1371/journal.pone.0012775
https://doi.org/10.1371/journal.pbio.3002453
https://doi.org/10.1038/s41540-024-00383-z
https://doi.org/10.1016/j.cell.2014.11.022
https://doi.org/10.1038/s41467-018-05393-0
https://doi.org/10.1016/j.cub.2014.12.009
https://doi.org/10.1016/j.bpj.2025.03.011
https://doi.org/10.1371/journal.pcbi.1004972
https://doi.org/10.1098/rsif.2020.0360
https://doi.org/10.1103/PhysRevX.11.021032
https://doi.org/10.1109/LCSYS.2024.3411041
https://doi.org/10.1038/srep30229
https://doi.org/10.1103/PhysRevLett.113.028101
https://doi.org/10.1073/pnas.1403232111
https://doi.org/10.1103/PhysRevResearch.5.013173
https://doi.org/10.1103/PhysRevResearch.6.L022043
https://doi.org/10.1007/s00285-014-0811-x
https://doi.org/10.1103/PhysRevE.99.042416
https://doi.org/10.1103/PhysRevLett.97.168302
https://doi.org/10.1016/j.cell.2005.09.031
http://link.aps.org/supplemental/10.1103/ysj3-gkrr
https://doi.org/10.3389/fncom.2016.00116
https://doi.org/10.1113/JP272799
https://doi.org/10.1103/PhysRevLett.132.228401
https://doi.org/10.1371/journal.pcbi.1013067
https://doi.org/10.1126/science.1119623
https://doi.org/10.1021/j100540a008

ALI SARAN, PRASAD, SINGH, AND DAS

PRX LIFE 3, 043002 (2025)

[85] E. O. Powell, Growth rate and generation time of bacteria, with
special reference to continuous culture, Microbiology 15, 492
(1956).

[86] F. Jafarpour, C. S. Wright, H. Gudjonson, J. Riebling, E.
Dawson, K. Lo, A. Fiebig, S. Crosson, A. R. Dinner,
and S. Iyer-Biswas, Bridging the timescales of single-
cell and population dynamics, Phys. Rev. X 8, 021007
(2018).

[87] P. Thomas, Making sense of snapshot data: Ergodic principle
for clonal cell populations, J. R. Soc. Interface 14, 20170467
(2017).

[88] S. Chakrabarti, A. L. Paek, J. Reyes, K. A. Lasick, G. Lahav,
and F. Michor, Hidden heterogeneity and circadian-controlled
cell fate inferred from single cell lineages, Nat. Commun. 9,
5372 (2018).

[89] S.Jun, F. Si, R. Pugatch, and M. Scott, Fundamental principles
in bacterial physiology—History, recent progress, and the fu-
ture with focus on cell size control: A review, Rep. Prog. Phys.
81, 056601 (2018).

[90] A. Genthon, Analytical cell size distribution: Lineage-
population bias and parameter inference, J. R. Soc. Interface
19, 20220405 (2022).

[91] Z. Zhang, 1. Zabaikina, C. Nieto, Z. Vahdat, P. Bokes, and
A. Singh, Stochastic gene expression in proliferating cells:
Differing noise intensity in single-cell and population perspec-
tives, PLoS Comput. Biol. 21, 1013014 (2025).

[92] K. Rijal, A. Prasad, A. Singh, and D. Das, Exact distribution of
threshold crossing times for protein concentrations: Implica-
tion for biological timekeeping, Phys. Rev. Lett. 128, 048101
(2022).

[93] O. Padovan-Merhar, G. P. Nair, A. G. Biaesch et al., Sin-
gle mammalian cells compensate for differences in cellular
volume and DNA copy number through independent global
transcriptional mechanisms, Mol. Cell. 58, 339 (2015).

[94] R. Losick and C. Desplan, Stochasticity and cell fate, Science
320, 65 (2008).

[95] K. Carniol, P. Eichenberger, and R. Losick, A threshold mech-
anism governing activation of the developmental regulatory
protein o in Bacillus subtilis, J. Biol. Chem. 279, 14860
(2004).

[96] R. Miyazaki, M. Minoia, N. Pradervand, S. Sulser, F.
Reinhard, and J. R. van der Meer, Cellular variability of RpoS
expression underlies subpopulation activation of an integrative
and conjugative element, PLoS Genet. 8, e1002818 (2012).

[97] J. W. Little and C. B. Michalowski, Stability and instability in
the lysogenic state of phage lambda, J. Bacteriol. 192, 6064
(2010).

[98] N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler,
Bacterial persistence as a phenotypic switch, Science 305,
1622 (2004).

[99] L. Schuh, M. Saint-Antoine, E. M. Sanford et al., Gene net-
works with transcriptional bursting recapitulate rare transient
coordinated high expression states in cancer, Cell Syst. 10, 363
(2020).

[100] S. M. Shaffer, B. L. Emert, R. A. Reyes Hueros et al., Mem-
ory sequencing reveals heritable single-cell gene expression
programs associated with distinct cellular behaviors, Cell 182,
947 (2020).

[101] M. Delbriick, Statistical fluctuations in autocatalytic reactions,
J. Chem. Phys 8, 120 (1940).

043002-14


https://doi.org/10.1099/00221287-15-3-492
https://doi.org/10.1103/PhysRevX.8.021007
https://doi.org/10.1098/rsif.2017.0467
https://doi.org/10.1038/s41467-018-07788-5
https://doi.org/10.1088/1361-6633/aaa628
https://doi.org/10.1098/rsif.2022.0405
https://doi.org/10.1371/journal.pcbi.1013014
https://doi.org/10.1103/PhysRevLett.128.048101
https://doi.org/10.1016/j.molcel.2015.03.005
https://doi.org/10.1126/science.1147888
https://doi.org/10.1074/jbc.M314274200
https://doi.org/10.1371/journal.pgen.1002818
https://doi.org/10.1128/JB.00726-10
https://doi.org/10.1126/science.1099390
https://doi.org/10.1016/j.cels.2020.03.004
https://doi.org/10.1016/j.cell.2020.07.003
https://doi.org/10.1063/1.1750549

Supplementary Material

Cyclo-stationary distributions of mRNA and Protein counts for random cell division
times

Syed Yunus Ali,"* Aditya Saran,! Ashok Prasad,> f Abhyudai Singh,® ¥ and Dibyendu Das"*:§

! Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
2School of Biomedical and Chemical Engineering,
Colorado State University, Fort Collins, Colorado 80521, USA
3 Department of Electrical and Computer Engineering,
University of Delaware, Newark, DE 19716, USA
4 Maz Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany

I. GENERAL FRAMEWORK TO STUDY THE CYCLO-STATIONARY DISTRIBUTIONS
A. Equation for the cyclo-stationary copy number distributions P{°(y;) and P**(y_)

In the main text, we present the equations for Pi " (Y405 ts;) and Pt (y_4,ts,), the distributions of copy numbers just
after and just before the i*" cell division respectlvely, as follows:

1 -
PL(yyists;) Z Z B(y+,i + 24, 27$+,¢)p(y+,z‘ Foparts [yric1) PU (W io1te ), (1)
Yt,im1 T i
Pl(y—ists) = > py—ists,lysi-1) P (Waim1,te ) (2)
Ytio1

Integrating Eq. 1 over the joint probability distribution of ga(ts,,ts,_,) of successive division time intervals,

9] [e%S)
1
/0 /0 dtsidtsi_lg2(tsi7tsi_1)P er 79 s / / dtsldtsl 192 Si 57_ 1 Z ZB y+z+x+ 172 £L'+ z)

Y+,i—1 T4,

Pt + T iyt io1, s ) PL (Y im1s s ) (3)

If it is further assumed that successive division times are uncorrelated, i.e. ga2(ts;,ts,_,) = g(ts;,)g(ts,_,), where
g(ts,) is the normalized distributions of t,,, we have

o0 oo 1
/ / dtsidtsi—lg(tsi) ( Si— 1)13Z Y+.is S / / dtsldtsi 19 51 1 Z ZB erZ +(E+ z,§,$+,i)
0 0

Y+,i—1 T4

P(Yti + T ilYsio1,ts, ) PL (Y4 i1, ts, ) (4)
which simplifies to

1
/ dtsL sl (y+ 79 ts1) = Z / dtsl Sq (y-i— 7 + -17-‘,- zly-‘r i—1; sl) <y+,i + $+,i; 57 x-l—,i)

Y+,i—1,T4 4

X /0 dtsi—lg(tsi—l)Pi(y‘F,i*l?tSi—l) (5)
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For i > 1, as the cyclo-stationary regime is attained, we may define the distribution as cell birth, P{*(y;) =
fooo dts,g(ts,) P (y+,i,ts,). Dropping the subscripts 4, and setting ¢, = t, and y; ;1 = 3/, Eq. 5 gives

SS 1 SS
Py (ys) ZZ/ dtsg(ts) Bly+ + 24, 50 4) X Py+ + @4, bly’s) PI(Y4). (6)

In a sunllar way, one may derive from Eq. 2 above, the cyclo-stationary distribution just before division, defined as
Ps(y_) = [ dts,g(ts,) P (y— i, ts,), related to P“(y+)

Py / dtog(ts) ply—, talyfs 1) PE(3,). (7)

Eqgs. 6 and 7 are the two Eqgs. 3 and 4 in the main text.

B. Self-consistent integral for the generating functions F (¢) and its relation to F_(q)

We define generating function Fy(q) = Z;Z:O q¥* P£*(y+). Multiply -, ¢¥+ on both sides of Eq. 6 we get,

Y+

1
ZZ/ dtég(té) Z qy+p(y+ + x+7t8|yf|-) B(y+ + T+, iam-‘r)P-ls-S(yg—) (8)
vy T

We defining a new variable § = y4 + 2, where 2, < i1 < oco. But since B(j4, 2,24) = 0 for §; < z4, we put
J+ € [0,00). Using the explicit form of the binomial function, the recursion relation of Fy (¢) may then be written as:

I+ 1 g+ 1 Jp—xy 1\ &+ ,
Z/ dtsg(ts) Y a" p( tslvl) D qu( > <2> (2 P (h)
Yt

x+:0 -’L‘+
Yyt q+1 §+ SS /
= Z dtsg Zq (s ts ‘y+) 2 P+ (y+)
q+
:/ dtsg(ts)ZF<2 Jts| v
0 ,
Yy

Here F(q,tly') = >_, ¢”p(y,t[y’) is the generating function of the probability p(y,t[y’) tied to the process of gene

)P 9)

expression. Let us assume that this generating function has a form F(q,t|y’) = H(g — 1,vyt) x (1 + (¢ — 1)e‘7yt)yl
This leads to the following self-consistent integral for F (¢) (which is Eq. 6 in the main text):

Pl = [ dngteam S geor (14 U5 e ). (10)

In a similar way, by multiplying Z% @Y~ on both sides of Eq. 7 we get,

ROILEDY | dg(e) % plo- sty < PE()
— l 0

:/0 dtsg(ts) Y Fla, |y’ ) Pi*(y))

Y4
o0
- / dtog(t)H(g — 1,7t ) Fy (1+ (g — 1)) (11)
0
Putting ¢ = 2¢' — 1 in Eq. 10 we have,
Fi (2¢ —1) :/ dtsg(ts)H(q — 1,vyts)Fy (1+ (¢ — 1)e” "), (12)
0

and comparing with Eq. 11, we obtain (the Eq. 7 in the main text):
F_(q)=Fi(2¢—1) (13)



C. Closed form of Fy(q) for Fixed cell cycle times, and the intractable nested integrals for Random cell
cycle times

For fixed cell division times, i.e. g(ts) = 0(ts — T, Eq. 10 reduces to

Fi(q)=H (q;17’ny) F, (1 + (q;l)e_"’yT> : (14)

If we set, ¢ — 1 = w then Eq. 14 becomes to
Fr(l+w)=H (%,ny) F, (1 + %ewT) . (15)

This recursion formula may be iterated to obtain
J —(k=1)vyT —7, T\’
w e e
k=1

aNd
As j — o0, Fy (1 +w (#) ) — F(1) =1, and hence

—(k=1)vyT

we

L (1+w) HH( T ,7yT>. (17)
Replacing back w = ¢ — 1 Eq. 17 gives the closed form in Eq. 8 in the main text.

For random division times ts, with any general normalised function g(ts), when we substitute w = ¢ — 1, Eq. 10
becomes:

Fr(l+w)= /OOO dt, g(ts)H (2 Yyt ) F, (1 + %e—%ts) . (18)

Iterating one step, and replacing the F; on the right side with an similar integral as Eq. 18, we obtain:

°° o tl t 2
Fy(w+1) = / itk gty (gont) [ a2 g () p (14 et g

where wy (t}) = Ye~ Wt Continuing with the next iteration,

o w o w o w w
Powr )= [t g (Gont) [ st (o) [ ad o (o) B (14 e )
(20)
where we = ws(t}, %) = %e_wti = %e"yyt e~ Repeating this indefinitely, as j — oo we have Fy (1 + wj) —

Fy (1) =1, where w; = “&= Wizle=t  and hence

1+ w) = Ttk g(tFym (UL k) 21
(1 +uw) r_[/ at gty (L ) (21)
As wy, = wy(th, 12, ., th) = &

2, *e ~Yutie= Wl e~ Wt the above nested integrals are in general intractable. This is why
the problem has stayed challenging.

D. Deriving the cyclo-stationary distributions at birth and before division, from the series expansion of
generating function about ¢ =1

Although P{*(y4) are themselves coefficients of the series expansion of F (q) about ¢ = 0, we may start with an
alternate expansion of F (¢q) =Y ;- (qzll)k Fj(Lk)(l) about ¢ = 1. In that case,

Yy 2 — 1)k © —1)k—vy+
o > Fi’“’(l)] -3 () e

k=0

oY+
8qy+

1
F+(Q)] = ?:'

q=0

1
pss y _ |:
+( +) y+'




Similarly, using Eq. 13, we have
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Thus above, we have the series expansions of P?*(y;) and P**(y_) (Eq. 11 and 12 in the main text) involving the
: (k)
coefficients F,"/(1).

E. The first three cumulants of P{°(y;) in terms of the coefficients F_‘(_k>(1)

Using Fly(q) =3, P{*(y+)g'* = Yo (q_Tl)kF_E_k)(l), we may obtain the cumulants as follows. The mean of y :

0 L k(g — 1)+—1
0 (Z -V Fi’”u)) =gy M )

q=1 k

() = Y P2 ) = 45 F 0

Y+ a=1

The second moment

q=1 q=1
(25)
Hence the Variance
5 2 _ () 2) @)
re = W3) = (w)? = FO )+ FP () - () (26)
The third moment
d d d
3
=q—q—q—F
(yi) 990%4% 3 +(a) -
k(g =1 k(k=1)(g—1)F2 k(k =1k =2)(¢ =12
=gy PP 3 x FEW+2> 0 F®M(1)
k ’ k ’ k ) q=1
=FY ) +3FrP 1) + FP(1) (27)
Hence the third cumulant is (see Eqgs. 24, 26 and 27 above)
ks = ((yy — m1)*) = [F{ (1) + 3FP (1) + F{ (1)] - 312 — (28)

The above equations appear as Eq. 13, 14 and 15 in the main text. Using the above cumulants we obtain CV? = kg /K32
and Skewness = /{3//1;’/2 in our study.

II. STATISTICS OF THE mRNA NUMBER IN THE CYCLO-STATIONARY STATE
A. The generating function related to the model of transcription, and thereby obtaining function H

The Master equation for the stochastic model of mRNA production and degradation is

dp(m, ;)

o = kmp(m — 1,tjm/,) + ym(m + D)p(m + 1,t|m/ ) — (ymm + kp)p(m, tjm/,). (29)



Here k,, is the transcription rate, and -, is the degradation rate of mRNAs. The generating function F(g,t) =
Z;io q"p(m,t|m/,) of the distribution p(m, t|m/,) satisfies (using Eq. 29 above) the following:

0F(q,t)

o ko (q — 1)F. (30)

oF
+ m _]- =
Ym (g )78(]

Eq. 30 can be solved by using the method of Lagrange characteristic, and one gets
F(g,t) = 20D (14 (g — 1)e ™5, (31)

where A(t) = (K, /vm)[1 — e~ 7™!]. For brevity we will use A\(t) = X\ below. Thus comparing with Eq. 5 of the main
text (also see below Eq. 9), we identify the function

km

H = emmlime "™ a1, (32)

B. Obtaining the coefficients Fik)(l) and the series of the distributions P{*(my4)

Using H from Eq. 32 in Eq. 10, and F(q) = Z;io (—1)’ F(J)( 1) we have

J'

Fala) = [ dtg(e) XV (g - )/ )

/ g (t) M 1/2)2 (‘1—1> "
00 00 )\l q 1 ZF(])(I) qg—1 J )
= [ araate D3 ( . )
0

il
=0 j= J:
0o oo o0 F(J q-— 1 I+j k l _ o
_ m —JYmts _ o UImts
= 23 (2) (Gn) e &
=0 5=0
Changing summation indices to k =1 + j and defining Wy ; = [~ dtsg(ts)e (1 — e~ rmis)k=J Eq. 33 becomes
[eS) k k k—j
1 /qg—1 k km ;
Fil))=) 5 <2> > (J) (%> U FY (1) (34)
k=0 Jj=0

Using the relation F}y (q) = Y ;- (q;!l)k Ff(l) on the left side of Eq. 34 above, and comparing coefficients we get
the desired recursion relation (which appears in Eq. 21 of the main text):

-5 () (e

The first few coefficients are explicitly as follows. As > P*(my) = 1 we firstly have Ff_o)(l) = 1. The next
coefficient (from Eq. 35) is

FO) 1 (\Il Eum, o F(l)(1)> ]f,’" 3P0 (36)
= — — + = n -
* 2\ b 1— 30,
Proceeding similarly we have Ff)(l) determined by Fil)(l) as follows:
2 2
m 52 ¥2,0 m 23 2,1%¥1,0
P AL )

ALY (1- %‘hl)( — 5 Us9)



Next, the coefficient

3 3 3
F(3)(1) %(%) LER %()\1131\1110( ) %( )\1132\1120( )
= +
+ 1— 2%\1/373 ( — 2*3\113,3)( — 5\111’1) ( — 27\1/2’2)( _ 2i3\I/3’3>
NGRS 2 (km)
N 26 (o) ¥3,2W21 V10 ( 5 9
(1= 3111 — (55 P22)(1 — 55 ¥33)
Observing the pattern of the successive coefficients, we obtain the general solution for Fik)( 1) as follows:
k Ly, s }
(k) km 1 1 (5)=i T br g, i gy - Diro
F(D<> (1= 20, ) + .0 (39)
+ Ym 2k (1—i‘11k k) {5;1} Hz( — 2%1 \I/]l J’L)

where ¢ ; = Wy ; (’;) Here {Si_1} denotes the set of all the subsets Sx—1 = {ji} = (Jz,J-—-1.--J1) of integers
€(1,2,..k — 1) such that j, > j,_1 > ... > j1. For example for k¥ = 3, the subsets are (1), (2), and (2,1) as is seen
in Eq. 38.
With the coefficients given by Eq. 39, the cyclo-stationary distributions are formally given by the series:

ss - k 1)k
> _1\k—m_9k
P=(m)= Y (T,’f )(Uk,QFi’“(l) (41)
k=m_ - ’

C. The cyclo-stationary mRNA distributions are Poisson for fixed cell-division times T

For fixed cell division times, g(ts) = 6(ts — T), we have Wy, ; = e 9/mT(1 — e~ T)k=J and

\I’k,jz \Ijjz’j271 . \Iljl,o — e_]z'YmT(l _ e_"/mT)k_]ze_szl'WnT(l _ e_’YWLT).'/z_]z—l....e_O*WmT(l _ e_'YmT)]l

= e T Ji(1— e YmTk (42)

Consequently from Eqgs. 40 and 39,

> _1\k—m4
P = 3 CE (Ao

m
k=m_ +

= i 7(71)3'*"4 < k > <km>k1 1 (%)Zji(bkdz(bjz,]z 1° "¢j1,0 +¢k,0

k! my V) 2 m (Se 1) IT: (1= 55 95.5:)

Yim
- 2 () () e e 2 OGS
(43)

Using the the following identity [1], with z = Je~7T" in this case,

v 2 G- o= w




Thus the (1 — 2*) factors cancel from the numerator and denominator, and Eq. 43 simplifies to

k:m+ er
_ -1 k—m4 45
=m
with d = (fy:) % Thus F* )( 1) = d*. Replacing k —m = r, then Eq. 45 reduces to a Poisson distribution:

ss rdr der
P (my) " ,Z il - exp(—d). (46)

Since Eq. 41 has an extra factor of 2* multiplying F_ﬁrk)(l)7 we would have d replaced by 2d and the distribution:

P (m_) = (22)_”;7 exp(—2d). (47)

D. Simplified form of the cyclo-stationary distributions for Exponentially distributed cell cycle times
For exponentially distributed division times, g(t;) = A\e™*s (with A = 1/T), and
A D=+ 10 (2 +5)

o0 , A=+ 5%m m
Uy, = / dtsg(ts)e™Tmts (1 — et )h=3 = \ /v, B <+ Jm 4 1) -~ (48)
0 Ym Ym T (% Lk 1)

(1)F( +k) A

and ¥y, = m m+’“+1) = 5E Then
k \ T(k+ 1[4+
Prj = ()‘I’ka = () .( ) A[%" | (49)
J Ym I‘(]+1)I‘[ﬁ+k+1]
Hence ¢ o = k'& Furthermore
,0 .F(ﬁ+k+1). 9
pEas! k! 1"[ ]
i i o 50
qs 3]z qs]z"?z 1 ¢J130 z+1 1—\[ + k + 1 H )\ + rY’m.]’L ( )
Substituting the above, in Eq. 40 and 39, we have
> k 1 [k \* 1/2% (3)>=7¢rj. bj.juy - Djr0
P = 3 () (B2 7 O Dt 2 Ot
- k_z% my k! (1 =1/250kp) | 2=, [L( = 55 95.5)
k
i~ 1 (km VG AT DA/ m)
=y ( k )(_1)k—m+ 2 (7) A G, — Y Sl ' F(A/%nlwl)
k=my NF (1= e W) |7m F(%ﬂ +k+1) {Sk-1} IL: (1 — 27 %) A + YmJi
k
s 1 (km P 1
k 2k ( ’"l) F(i + 1) TWL ‘L
_ Z ( )(_1)k—m+ . l’Y\II )\’Ym 1+ Z H 211-7LI/7.7
k=m4 m4 ( 2k k7k) F(% + k + 1) {Sk_1} ( 27i ~ Jis ]1)
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0o 1 (km A
=3 (k )( k-2 (%) PGy + Y L
WS, N\t (1= Wsp) T +E+ D1 - 20,
k
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k=my N ! [I; (A + vmi A)



0.15
0.12

-~
E 0.09
3&- 0.06

0.03

FIG. 1. Cyclo-stationary distribution P°°(m_) of mRNA for the four g(¢s) shown in Fig. 3 in the main text (corresponding
colours being the same)

where we have used an identity [1], with f(j;) = 55 ¥}, ;, as follows:

fG) 1
1+ > H(l—f(ji)_l_[ffl(l—f(i)) "

Eq. 51 shows that FJ(rk)(l) = k! (%)k/nf(/\ + Ymi — 3:A). For obtaining the distribution before division, we note
the extra factor of 2% in Eq. 41, and that implies (comparing with Eq. 51)

oy S (R) DT k)
P 3 )R gy -

k=m_

E. Expressions of CV? and Skewness of the distribution P;*(my) of mRNA at cell birth.

Using the exact expressions of FJ(FI)(l)7 FJ(FQ) (1), and Ff')(l) in Egs. 36, 37 and 38, we have obtained the cumulants
(from Eqs. 24, 26 and 28), and thus studied the mean, C'V? and Skewness in the main text.

III. STATISTICS OF CYCLO-STATIONARY PROTEIN COUNT
A. The generating function for protein kinetics, and thereby obtaining function #

The Master equation for the bursty protein translation is the following (with initial copy number being n/ ):

OP(n,t|n’ - "
OP(n, tiny,) =kpy, Z (bP(n —rtnl) — LP(mt\nﬁr) + 9 [(n+ 1)P(n+1,tn’,) — nP(n,tin’,)] .

ot — (b+ 1)t b+1
(54)
The generating function F(q,t|n! ) = Z;io q"p(n,t|n’, ) is known to satisfy [2]
10F OF ab
el 59
v 0T + ov  1—bv (5)
where v =¢—1, 7=t and a = ﬁ/—: The solution of Eq. 54 by the method of Lagrange characteristics yield [2]

Flq,tln',) = <1 _1b(_qb_(qlzel;” > x (14 (q— 1) e )™ | (56)




Thus comparing with Eq. 5 of the main text (also see below Eq. 9), we identify the function

2 - <1 —1b(_qbquiel)vpts )a . (57)

B. Obtaining the recursion relation for the coefficients F_f_k)(l) in the series of the distributions Pi*(m+)

Using H from Eq. 57 in Eq. 10, and Fi(q) = >72, (- ,1)J F(J)( 1) we have

> _b(g—1) et \* _
Fi(q) :/O dtsg(ts) (1 1{% (ql) 5 > F, <1 + (qzl)ews)

o0 1= (g—1Dewt\" S FI(1) (g—1)7 _,
= [ dtsgl(ts 2 eI
J e (2 ) 2 o

=0
_ [ — DPla+1) (=)' (g—Dle s KT(a+s) (b q—ls o Fi(1)e 9t (g — 1)
_/0 dtsg(ts);r(a—lﬂ) (2) I ; [(a) ( > Jz:;) 275!
- © 00 0 oo o IFla+1) T(a+s) é I+s PS4+t a+k— F(j)()
_;ZE/ alt) ) Ty e (3) @D ("% ey
(58)

We define Lyy; = [, dtsg(ts)e”(F9)7t and replace indices [ + j + s = k, which leads to
k-1

0o k k ,Z{,"Fa+k*l* b k—j L JF(])(I)
Rw=L OGS ST (5) )

A series expansion on the left side of Eq. 59 about ¢ = 1, and comparing with the right side, yields the desired
recursion relation:

k k—I1 k—j L | ,
*)(1 b (a+k—1—57-1!
Fy k! : FO1
;jz l“(a—Z)! Wjt(k—1—jr + (1) (60)

The above Eq. 60 appears as Eq. 26 in the main text. Once these coefficients Fik)(l) are solved for, they may be
used to obtain the cyclo-stationary distributions

9y N (B EDE
A= 3 (5 )= (61)
> _1\k—n_9ok
P =Y (1) (02
k=n_ - '

C. Expressions of first three Fik>(1) which determine exactly CV? and Skewness of the distribution P:*(n)
of protein.

Firstly, Fio)(l) = 1. Then using the above Eq. 60 recursively, we get

(1) 1-1
rYa) =
) =abs—p (63)
then,
b2 2 3L, + LI
FP1)=-"2 (1—L2)+a( 1+ Lils) (64)

4— Lo (2—Ly)
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and then,

3 (1) —
(1) = ——

ab® ((1 +a)(2+a) - 3a((1 +a)Ly — (a—1)Ls) — (a—2)(a — 1)L3)

+ 3ab? ((1 +a)Ly —2aLs + (a — 1)L3)F$>(1) + 3ab<L2 - Lg)Ff)u) (65)

The constants Ly, Ly and L3 may be evaluated given a g(¢s). Then the above Eqs. 63, 64 and 65 are substituted in
the Egs. 24, 26 and 28, to obtain the cumulants and thus CV? and Skewness, which are studied in the main text.

IV. COMPUTATIONAL METHODS

A. Precautions to perform numerical sums of different series to obtain the coefficients F_f_k)(l) and the
theoretical cyclo-stationary distributions P:’

In this work we had to sum various %eries to obtain the desired coefficients and functions.
The equations for the coefficients Fi )( 1) appear as Eq. 35 for mRNA, and Eq. 60 for protein, and are of the form

k—1
k J
FP ) =3 e FP(1) (66)
j=1

As the values of Fij )(1) grow very fast with j we loose precision soon in ordinary calculations. A better way to store
large numbers is by taking logarithm, and we do so for terms in Eq. 66. Thus we store terms

up; =1Incg; + lnFij)(l). (67)

We specify very high precision for such calculation and storage in Mathematica (through the SetPrecision[d] command)
up to d = 100 decimal places in case of mRNA and d = 200 decimal places for protein. We reconstruct back the
coefficient

k—1
FP (1) =3¢, (68)
j=1

Once the coefficients Fik)(l) are obtained by the above method, up to some desired k, we put them in the series
in Egs. 40 and 41 for mRNA, and Egs. 61, 62 for protein, to obatin the cyclo-stationary distributions. For mRNA,
convergence was attained for ~ 30 — 50 terms in the series of P;*(m4).

For protein, ordinary sum of the series of P{*(ny) were not enough with reasonable values of k. We used Borel
sum formula as follows:

M —o0

P(ng) = Y f(kni) = Pi(ng) = lim e™" ) 52 K +ng,ny) (69)
n=0  k'=0

t—o0
k=n4 Borel

In calculations we choose M ~ 200—250 and ¢ = 30 to obtain convergence of the protein cyclo-stationary distributions.

B. Kinetic Monte Carlo Simulations

We perform Kinetic Monte Carlo (KMC) or Gillespie [3] simulations for the various models governing the tran-
scription or translation models of mRNA and protein in this paper, undergoing Binomial partitioning after random
time intervals ts drawn from some distribution g(¢s). Thus, at any instant, there are three possible events to either
increase, decrease, or reset the copy number (due to cell partition). We typically use ~ 107 histories for getting the
data for various distributions and cumulants, which were then compared with the theory.

For lineage protein distribution of any age, we simulate several copies (~ 10°) of single lineage samples and stop
them at a fixed large time (roughly after ~ 20 generations) such that the cyclo-stationary state is reached. We get
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the protein counts from the samples and use them to obtain the desired distribution. We also maintain clocks with
every cell and at the final time, get their current age to obtain the age distribution.

Similarly, we simulate an exponentially growing population by keeping track of the cell age, division times, and
protein count for each cell. After a long time, we just stopped the simulation and acquired the data from the population
to plot the age distribution and the age-independent protein number distribution.

V. AGE DEPENDENT CYCLO-STATIONARY DISTRIBUTIONS

The cyclo-stationary distribution P**(y, 7) of cells at an age T before the next cell division, may written with respect
to P§*(y4) at birth, as follows:

P*(y,7) = Y P (y+)p(y, lys)- (70)

Using its generating function G(q, ) = >, ¢'P*(y,7), from Eq. 70 (and using the same steps as in Egs. 9 and 10)

ZP” (Y4)F (g, 7lys) = H(g — 1,9y7) Fy(1+ (g —1)e ™7)

_ Z (¢ ;!l)kGék) () (71)

k

The defined quantities Gg(,k)(r) are obtained in Eq. 71 by expressing F, (¢q) = ZJOO o (qj,l)J F(J)( 1), and expanding H
as a power series of (¢ — 1). The resulting expression of G;k)(T) are of the form of the integrands of Eqs. 33 or 58
(without the fooo dtsg(ts)/2* factors), and are explicitly given for mRNA and protein in Egs. 30 and 31 in the main

text. Finally it is easy to obtain the desired age-dependent distributions in terms of Gék)(T) as

=y ("C) (G i 1]3! G (7). (72)

q=0 k=y Y

1 0YG

pss -
W.r) = e

VI. GENERATING FUNCTIONS OF PROTEIN DISTRIBUTION AT BIRTH, FOR DETERMINISTIC
PARTITIONING, AND DETERMINISTIC GENE EXPRESSION

If we have a deterministic partitioning, we would replace the binomial distribution B(g., %, z4) in Egs. 8 and 9 by
5 and as a result

5

4,9+ /

Z/ dtsg(ts qu*p Uystsly)) Z %5” PPy

3,+_0

72/ dtsg(ts qu+/2 p(I+.tsly) | P (Y4
:/0 dtsg(ts ZF<

For proteins y = n, and using the appropriate F'(q,t|n/, ) from Eq. 56, we have the counterpart of Eq. 10 as:

e 1—b(yg—1)ewt\" o
_/O dtsg(ts)< b (g 1) ) Fy (1+(Vg—1)e ) (74)

If in addition to deterministic partitioning, one also has deterministic protein kinetics

dn
E - kmb - Vp", (75)

o) P ). (73)
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then ny =n/ e " +ab(1 —e ') and F in Eq. 73 gets replaced by gz Qe e ) where Ap = ab(l —e %t fe.

Z | dtgte) | a2ttt | peoer)

[
:/ dtg(t, Zpss g Cortrie w0
EUVIPUNG 1%
:/ dtsg(ts)q%’\pZPf(nﬁr) (q%e 'th:,> +
0 oy
+

:/°° dtg(ts)g3  Fy(g2e ") (76)

0

The moment (ny) = qain+( )

1 and (n?) = qa%qa%FJr( ) ; and hence taking derivatives of on two sides of
q= q=

Eq. 74 and 76 respectively, and setting ¢ = 1, we may obtain the moments in the two cases above. The explicit forms
of CV? thus obtained are shown in Eq. 32 in the main text (corresponding to Eq. 74) and in Eq. 34 in the main text
(corresponding to Eq. 76).
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