





July 2024

#### Message from the Head of the Department:

At the outset, let me extend my heartiest congratulations to you on successfully qualifying to become a student of IITB. I understand the amount of hard work and dedication that you have put in to achieve this and I am sure that you will continue to put the same for achieving greater heights during your stay here. As these are difficult times and we are all experimenting with a new mode of education, I am sure you will try your best to adjust to the new world.

Physics department of IITB is one of the oldest departments of the institute and one of the most vibrant Physics departments in the country today. For the last few years, our dept. has been ranked as the number one/two Physics department in India according to the QS ranking. We have 50 faculty members, about 240 B.Tech. students, 120 M.Sc. students and 120 Ph.D. students. There are about 25 Post-Doctoral fellows, working in different groups. We also have support staff of about 25 people. We have all modern teaching laboratories and a well-equipped department library. A computer lab only meant for students is also available for you.

This booklet also contains the curriculum and the course contents that you have to follow. You may note that in the final year, there are a few core courses that are common for B.Tech. and M.Sc. Also, almost all elective courses are common and taught in the same class. Ph.D. students have to take some of the M.Sc. core or elective courses as indicated later.

The main areas of research in the department are (i) Condensed Matter Physics, (ii) Astrophysics/Cosmology/Gravity, (iii) High Energy Physics, (iv) Photonics and Spectroscopy (v) Statistical Physics/Bio Physics/Soft Matter Physics/Non-linear Dynamics. In almost all these areas, both theoretical as well as experimental research is going on. There is ample scope for you to interact with the faculty members to get involved in the research activities, in addition to your normal academic work. I encourage you to take up such assignments and get more exposure.

Many of our alumni (B.Tech., M.Sc. and Ph.D.) have performed very well in their career and are in leading positions in academia/industry/civil services/corporate sector in India or abroad. With the training that you get here, I am sure you will all be able to rise to such levels of excellence. Please make use of every opportunity and facility that are available in the department and in the institute to achieve this, develop your personality and come out in flying colours.

Let's together meet the new challenges and transform them into opportunities....

With best wishes,

[S. Dhar]

|     | List of Faculty Members |     |                       |  |  |
|-----|-------------------------|-----|-----------------------|--|--|
| No. | Name                    | No. | Name                  |  |  |
| 1   | P. P. Singh             | 26  | Archana Pai           |  |  |
| 2   | Raghav Varma            | 27  | Mithun K. Mitra       |  |  |
| 3   | S. Umasankar            | 28  | Kumar Rao             |  |  |
| 4   | A. V. Mahajan           | 29  | Vikram Rentala        |  |  |
| 5   | T. Kundu                | 30  | Raghunath C           |  |  |
| 6   | M. Senthil Kumar        | 31  | Amitabha Nandi        |  |  |
| 7   | K. G. Suresh            | 32  | Sai V                 |  |  |
| 8   | Alok Shukla             | 33  | Gopal Dixit           |  |  |
| 9   | B. K. Nandi             | 34  | Soumya Bera           |  |  |
| 10  | P. Ramadevi             | 35  | Sumiran Pujari        |  |  |
| 11  | A. Sain                 | 36  | Varun Bhalerao        |  |  |
| 12  | Dibyendu Das            | 37  | Sunita Srivastava     |  |  |
| 13  | Asmita Mukherjee        | 38  | Anshuman Kumar        |  |  |
| 14  | Punit Parmananda        | 39  | Pramod Kumar          |  |  |
| 15  | S. Dhar                 | 40  | Hridis Kumar Pal      |  |  |
| 16  | M. Aslam                | 41  | Nitin Kumar           |  |  |
| 17  | Pragya Das              | 42  | M. Maniraj            |  |  |
| 18  | K. Das Gupta            | 43  | Himadri Dhar          |  |  |
| 19  | Parinda Vasa            | 44  | Siddhartha Santra     |  |  |
| 20  | Dinesh Kabra            | 45  | Sayantika Bhowal      |  |  |
| 21  | Pradeep Sarin           | 46  | Uditendu Mukhopadhyay |  |  |
| 22  | Sadhana Dash            | 47  | Rahul Kashyap         |  |  |
| 23  | Aftab Alam              | 48  | Prashant Kumar        |  |  |
| 24  | S. Mahapatra            |     |                       |  |  |
| 25  | S. Shankaranarayanan    |     |                       |  |  |

| Ph.D. (2024)   | Raghunath Chelakot |
|----------------|--------------------|
| M.Sc. (2024)   | Sunita Srivastava  |
| B.Tech. (2024) | Amitabha Nandi     |
| M. Sc. (2023)  | Pramod Kumar       |
| B.Tech. (2023) | Sumiran Pujari     |
| B.Tech. (2022) | Siddhartha Santra  |
| B.Tech. (2021) | Hridis Pal         |
| B.Tech. (2020) | Mithun K. Mitra    |

#### List of faculty advisers of current batches

## **Minimum Credits required**

| Degree                                     | Credits                                                                                                                                                                  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Tech. Engineering Physics               | 265                                                                                                                                                                      |
| B. Tech. Engineering Physics (with Honors) | 265+24=289 (4 years)                                                                                                                                                     |
| Minor - Engineering Physics                | 30                                                                                                                                                                       |
| B. TechM.Tech. Dual Degree*                | 265+126=391 (5 years)                                                                                                                                                    |
| Integrated M.Sc. (B.Tech. to M.Sc.)**      | 265+96=361 (5 years)                                                                                                                                                     |
| M. Sc.                                     | 145                                                                                                                                                                      |
| M.Sc. to M.ScPh.D.***                      | 145+34 (5 semesters)                                                                                                                                                     |
| Ph.D.                                      | 34 (for students with M.Sc.)                                                                                                                                             |
|                                            | 16 (for students with M.Tech./M.E.                                                                                                                                       |
|                                            | 44 (for students with<br>B.Tech./B.E./B.S.)                                                                                                                              |
|                                            | [PH 899 communications skills<br>(Pass/No Pass course) and a 4-<br>credit Seminar are compulsory<br>for all. The latter can be taken in<br>the first or second semester. |

\*subject to the interest by a B.Tech. student AND the approval of the Dept. (minimum CPI required =7.5 at the end of the third year)

\*\*Subject to the interest by a B. Tech. student AND the approval of the Dept. (minimum CPI required =7.5 at the end of the third year)

\*\*\* subject to the interest by a M.Sc. student AND the approval of the Dept. (minimum CPI required =6.5 at the end of the third semester, without any backlog)

#### Department Academic Mentorship Program (DAMP)

The Department Academic Mentorship Program works to provide assistance to students of the department, with two primary aims:

- 1. Providing the freshers with a smooth transition into the department in their second year
- 2. Enabling academically weak students to get back on track

With these broad aims, our activities can be put into the following categories:

- 1. Student mentorship:
  - a. Freshman year has common courses for all departments, except a Department Introductory Course. From the second year onwards, there are more of department specific courses and electives, and all sophomore students are assigned a DAMP mentor to help them manoeuvre their way through these.
  - b. Mentors are also assigned to all third/fourth year students having a large number of backlog courses to aid them in clearing their backlogs and improving their academic standing.

Faculty Interaction: We strive to improve the level of interaction between the faculty and the students of the department, through a number of events conducted throughout the year. With regards to improving the feedback from the students, we carry out a midsem course review every semester to identify any general problems that the students might be facing and convey them to the respective course instructor. We also keep in touch with the course instructors throughout the semester and communicate their feedback about students who are falling behind to the corresponding DAMP mentors.

Support and Outreach:

. We have a DAMP blog which is run by students of the department, hosting content such as reviews of elective courses, internship experiences, AMAs with professors, and frequently asked questions (FAQs).

a. We conduct help sessions for the students, based on feedback from the class and the instructor, especially before the major exams.

b. We organize various knowledge-sharing sessions for the students, with seniors sharing their experience on minors and elective courses, internships, graduate school applications, and non-core career opportunities to name a few.

#### **Students Association Physics Department (SAPD):**

SAPD handles the informal side of the physics department. SAPD organizes events such as Freshmen Introduction, Department Trips and Kurta Days. SAPD is responsible for designing cool Department of Physics T-shirts every year.

# **Curricula and Course Contents**

of

B.Tech.

M.Sc.

And

Ph.D.

# B. Tech. (Engineering Physics)

# 2022 batch

| Year/Sem | Course code | Course Title                             | Category                                | Credits               |
|----------|-------------|------------------------------------------|-----------------------------------------|-----------------------|
|          | BB 101      | Biology                                  | Basic Sciences<br>and Mathematics       | 2-1-0-6               |
|          | MS 101      | Makerspace                               | Engineering<br>Sciences and skills      | 8                     |
|          | СН 105      | Organic and Inorganic Chemistry          | Basic Sciences<br>and Mathematics       | 3-1-0-4 (half<br>sem) |
|          | СН 107      | Physical Chemistry                       | Basic Sciences<br>and Mathematics       | 3-1-0-4 (half<br>sem) |
|          | PH 109      | Fundamental Themes in Physics<br>(DIC 1) | Dept. core                              | 2-1-0-6               |
|          | MA 109      | Calculus I                               | Basic science<br>and maths              | 3-1-0-4 (half<br>sem) |
|          | MA 111      | Calculus II                              |                                         | 3-1-0-4 (half<br>sem) |
| l Year   | CH 117      | Chemistry lab                            | Basic Sciences<br>and Mathematics       | 0-0-3-3               |
| l Sem    | NOCS 01     | NCC/NSS/NSO                              | Non - Credited<br>compulsory<br>Courses |                       |
|          | GC 101      | Gender sensitization course              | Non - Credited<br>compulsory<br>Courses |                       |
|          | TA 101      | TA Course                                | Non - Credited<br>compulsory<br>Courses |                       |
|          |             |                                          |                                         | Total credits: 39     |
|          |             | 1                                        | 1                                       | 1                     |
|          | CS 101      | Computer programming                     | Engineering<br>Sciences and skills      | 2-1-0-6               |
|          | MA 106      | Linear Algebra                           | Basic Sciences<br>and Mathematics       | 3-1-0-4 (half<br>sem) |
|          | MA 108      | Differential Equations                   | Basic Sciences<br>and Mathematics       | 3-1-0-4 (half<br>sem) |
| l Year   | PH 111      | Introduction to classical physics        | Basic Sciences<br>and Mathematics       | 3-1-0-4 (half<br>sem) |
| II Sem   | РН 112      | Introduction to quantum physics          | Basic Sciences<br>and Mathematics       | 3-1-0-4 (half<br>sem) |
|          | PH 113      | Oscillations and Waves (DIC 2)           | Department Core                         | 2-1-0-3(half sem)     |
|          | PH 114      | Thermal Physics (DIC 2)                  | Department Core                         | 2-1-0-3 (half<br>sem) |
|          | PH 117      | Physics lab                              | Basic Sciences<br>and Mathematics       | 0-0-3-3               |
|          |             | 0                                        |                                         |                       |

| HSS/IDC/ENT | Introduction to HASMED | HASMED Core    | 3-1-0-8           |
|-------------|------------------------|----------------|-------------------|
|             |                        | Non - Credited |                   |
|             |                        | compulsory     |                   |
| NOCS 02     | NCC/NSS/NSO            | Courses        |                   |
|             |                        |                | Total credits: 39 |

| Year/<br>Sem     | Course code | Course Title                                               |                                       |                  |
|------------------|-------------|------------------------------------------------------------|---------------------------------------|------------------|
|                  | EC 101      | Economics                                                  | HASMED Core                           | 2-1-0-6          |
|                  | PH 217      | Classical Mechanics                                        | Department<br>Core                    | 2-1-0-6          |
|                  | PH 223      | Complex Analysis and Integral<br>Transforms                | Department<br>Core                    | 2-1-0-6          |
| ll Year<br>I Sem | MM 225      | Al and Data Science                                        | Engineering<br>Sciences and<br>skills | 2-1-0-6          |
|                  | PH 225      | Quantum Mechanics I                                        | Department<br>Core                    | 2-1-0-6          |
|                  | PH 221      | Analog Electronics                                         | Department Lab<br>(core)              | 1.5-0-3-6        |
|                  |             |                                                            |                                       | Total credits=36 |
|                  |             |                                                            |                                       |                  |
|                  | DE 250      | Design Thinking                                            | HASMED Core                           | 2-1-0-6          |
|                  | PH 307      | Introduction to Numerical<br>Analysis                      | Department<br>Core                    | 2-1-0-6          |
|                  | PH 423      | Quantum Mechanics II                                       | Department<br>Core                    | 3-1-0-8          |
| ll Year          | PH 438      | Statistical Mechanics                                      | Department<br>Core                    | 2-1-0-6          |
| ll Sem           | PH 222      | Digital Electronics and<br>Microprocessors (lecture + lab) | Department Lab<br>(core)              | 1.5-0-3-6        |
|                  | PH 232      | General Physics Lab                                        | Department Lab<br>(core)              | 0-0-3-3          |
|                  |             |                                                            |                                       | Total credits=35 |
|                  |             |                                                            |                                       |                  |

| Year/Sem | Course code | Title                                      |                                      | Credits           |
|----------|-------------|--------------------------------------------|--------------------------------------|-------------------|
|          | PH 312      | Electromagnetic Theory                     | Department<br>Core                   | 3-1-0-8           |
|          | РН 436      | Introduction to Condensed Matter Physics   | Department<br>Core                   | 2-1-0-6           |
|          | PH 446      | Solid State Physics + Nuclear Physics Lab  | Department Lab<br>(core)             | 0-1-3-3           |
| III Year | ES 250 & HS | Environmental Science                      | Basic Sciences<br>and<br>Mathematics | 2-1-0-6           |
| l Sem    |             | HASMED elective 1                          | HASMED<br>Elective                   | 2-1-0-6           |
|          |             | Honors course (must for DD students)       |                                      | 2-1-0-6           |
|          |             |                                            |                                      | Total credits: 29 |
|          |             |                                            |                                      |                   |
|          | PH 314      | Molecular spectroscopy and optical physics | Department<br>Core                   | 3-1-0-8           |
|          |             | STEM elective 1                            | STEM Elective                        | 2-1-0-6           |
|          |             | Department elective 1                      | Department<br>Elective               | 2-1-0-6           |
| III Year |             | HASMED elective 2                          | HASMED<br>Elective                   | 2-1-0-6           |
| ll Sem   |             | BTP 1 or equivalent elective               | Department<br>Elective               | 2-1-0-6           |
|          | PH 447      | Optics + Spectroscopy Lab                  | Department Lab<br>(core)             | 0-0-3-3           |
|          |             | Honors Course (must for DD students)       | Department<br>Elective               | 2-1-0-6           |
|          |             | Т                                          | otal credits: 35 (                   | without honors)   |

| Year/Sem         | Course code | Title                     |                                | Credits |
|------------------|-------------|---------------------------|--------------------------------|---------|
|                  |             |                           |                                |         |
|                  |             | Department elective 2     | Department<br>Elective         | 2-1-0-6 |
| IV Year<br>I Sem |             | BTP 2/Equivalent elective | BTP/<br>Equivalent<br>Elective | 2-1-0-6 |
|                  |             | STEM elective 2           | STEM Elective                  | 2-1-0-6 |

|         | Flovible elective 1                  | Flexible              | 2-1-0-6        |
|---------|--------------------------------------|-----------------------|----------------|
|         | Flexible elective 1                  | Elective              |                |
|         |                                      | Flexible              | 2-1-0-6        |
|         | Flexible elective 2                  | Elective              | 2100           |
|         |                                      | Department            | 2106           |
|         | Honors Course (must for DD students) | Elective              | 2-1-0-0        |
|         |                                      | Total credits: 30 (wi | ithout honors) |
|         |                                      |                       |                |
|         |                                      |                       |                |
|         |                                      | BTP/                  |                |
|         |                                      | Equivalent            | 2-1-0-6        |
|         | BTP 3/Equivalent elective            | Elective              |                |
|         |                                      | Flexible              | 2100           |
|         | Flexible elective 3                  | Elective              | 2-1-0-6        |
|         |                                      | Flexible              | 2100           |
| IV Year | Flexible elective 4                  | Elective              | 2-1-0-6        |
| ll Sem  |                                      | Flexible              | 2100           |
|         | Flexible elective 5                  | Elective              | 2-1-0-0        |
|         |                                      | Department            | 24.0.0         |
|         | Department elective 3                | Elective              | 2-1-0-6        |
|         |                                      | Department            |                |
|         | Honors Course (must for DD students) | Elective              |                |
|         |                                      | Total credits: 30 (wi | ithout honors) |

#### ONLY FOR DD STUDENTS

| Year/Sem | Course code       | Title                                         |                           | Credits         |
|----------|-------------------|-----------------------------------------------|---------------------------|-----------------|
|          | PH 575            | Nanoscience: Fundamentals to Fabrication      | Department<br>Core for DD | 2-1-0-6         |
|          | PH 570            | Advanced Laboratory Techniques in Nanoscience | Department<br>Core for DD | 2-1-0-6         |
|          | PH 591            | Dual degree project I (DDP I)                 | Department<br>core for DD | 30              |
| MNaar    | Total credits: 42 |                                               |                           |                 |
| v rear   |                   |                                               |                           |                 |
| 1 Selli  | PH 576            | Nanoscale Quantum Transport                   | Department<br>Core for DD | 2-1-0-6         |
|          | PH 578            | Nanodevices and Applications                  | Department<br>Core for DD | 2-1-0-6         |
|          | PH 592            | Dual degree project II (DDP II)               | Department<br>core for DD | 42              |
|          |                   |                                               | То                        | tal credits: 54 |

In addition, the DD students need to take 4 electives of their choice plus Supervised Learning Project (SLP) of 6 credits

Total credits (minimum) for 4 Year B. Tech. = 265

Total credits (minimum) for 5 Year B. Tech-M.Tech. = 265+ 126

# B. Tech. (Engineering Physics)

# 2023 batch onwards

| Year/Sem        | Course code | Course Title                                               | Category                                | Credits                    |
|-----------------|-------------|------------------------------------------------------------|-----------------------------------------|----------------------------|
|                 | BB 101      | Biology                                                    | Basic Sciences<br>and Mathematics       | 2-1-0-6                    |
|                 | MS 101      | Makerspace                                                 | Engineering<br>Sciences and skills      | 8                          |
|                 | MA 105      | Calculus                                                   | Basic science<br>and maths              | 3-1-0-8                    |
|                 | PH 109      | Fundamental Themes in Physics<br>(DIC 1)                   | Dept. core                              | 2-1-0-6                    |
| l Year<br>I Sem | CH 117      | Chemistry lab                                              | Basic Sciences<br>and Mathematics       | 0-0-3-3                    |
|                 | NOCS 01     | NCC/NSS/NSO                                                | Non - Credited<br>compulsory<br>Courses | 0                          |
|                 | GC 101      | Gender sensitization course                                | Non - Credited<br>compulsory<br>Courses | 0                          |
|                 |             |                                                            |                                         | Total credits: 31          |
|                 |             |                                                            |                                         |                            |
|                 | CS 101      | Computer programming                                       | Engineering<br>Sciences and skills      | 2-1-0-6                    |
|                 | MA 110      | Linear Algebra and Differential<br>Equations               | Basic Sciences<br>and Mathematics       | 3-1-0-8                    |
|                 | PH 110      | Introduction to classical physics<br>and Quantum mechanics | Basic Sciences<br>and Mathematics       | 3-1-0-8                    |
| l Year          | HSS/IDC/ENT | Introduction to HASMED                                     | HASMED Core                             | 3-1-0-8                    |
| II Sem          | PH 117      | Physics lab                                                | Basic Sciences<br>and Mathematics       | 0-0-3-3                    |
|                 | NOCS 02     | NCC/NSS/NSO                                                | Non - Credited<br>compulsory<br>Courses |                            |
|                 |             | · · · · ·                                                  | 1                                       | Total credits: 33          |
| Year/<br>Sem    | Course code | Course Title                                               |                                         |                            |
|                 | EC 101      | Economics                                                  | HASMED Core                             | 2-1-0-6                    |
|                 | PH 113      | Oscillations and Waves (DIC-2,<br>Part-I)                  | Department<br>Core                      | 2-1-0-3 (half<br>semester) |
|                 | PH 114      | Thermal Physics (DIC-2, Part-II)                           | Department<br>Core                      | 2-1-0-3 (half<br>semester) |
| ll year         | PH 217      | Classical Mechanics                                        | Department<br>Core                      | 2-1-0-6                    |

| l sem        | PH 223      | Complex Analysis and Integral<br>Transforms                | Department<br>Core                    | 2-1-0-6          |
|--------------|-------------|------------------------------------------------------------|---------------------------------------|------------------|
|              | РН 227      | AI and Data Science                                        | Engineering<br>Sciences and<br>skills | 2-1-0-6          |
|              | PH 221      | Analog Electronics                                         | Department Lab<br>(core)              | 1.5-0-3-6        |
|              |             |                                                            |                                       | Total credits=36 |
|              |             |                                                            |                                       |                  |
| Year/<br>Sem | Course code | Title                                                      |                                       |                  |
|              | PH 216      | Statistical Mechanics                                      | Department<br>Core                    | 2-1-0-6          |
|              | PH 225      | Quantum Mechanics I                                        | Department<br>Core                    | 2-1-0-6          |
|              | DE 250      | Design Thinking and innovation                             | HASMED Core                           | 2-1-0-6          |
| ll Year      | PH 312      | Electromagnetic theory                                     | Department<br>core                    | 3-1-0-8          |
| ll Sem       | PH 222      | Digital Electronics and<br>Microprocessors (lecture + lab) | Department Lab<br>(core)              | 1.5-0-3-6        |
|              | PH 232      | General Physics Lab                                        | Department Lab<br>(core)              | 0-0-3-3          |
|              |             |                                                            |                                       | Total credits=35 |
|              |             |                                                            |                                       |                  |

| Year/Sem | Course code        | Title                                     |                                      | Credits |
|----------|--------------------|-------------------------------------------|--------------------------------------|---------|
|          | ES 250 & HS<br>250 | Environmental Science                     | Basic Sciences<br>and<br>Mathematics | 2-1-0-6 |
|          | РН 307             | Introduction to Numerical Analysis        | Department<br>Core                   | 2-2-0-6 |
| III Year | РН 309             | Quantum Mechanics II                      | Department<br>Core                   | 3-1-0-8 |
| ISem     | PH 436             | Introduction to Condensed Matter Physics  | Department<br>Core                   | 2-1-0-6 |
|          |                    | HASMED elective 1                         | HASMED<br>Elective                   | 2-1-0-6 |
|          | PH-446             | Solid State Physics + Nuclear Physics Lab | Department Lab<br>(core)             | 0-1-3-3 |

|          |        | Honors course (must for DD students)       |                                | 2-1-0-6           |
|----------|--------|--------------------------------------------|--------------------------------|-------------------|
|          |        |                                            |                                | Total credits: 35 |
|          |        |                                            |                                |                   |
|          | PH 314 | Molecular spectroscopy and optical physics | Department<br>Core             | 3-1-0-8           |
|          |        | STEM elective 1                            | STEM Elective                  | 2-1-0-6           |
|          |        | Department elective 1                      | Department<br>Elective         | 2-1-0-6           |
| III Year |        | HASMED elective 2                          | HASMED<br>Elective             | 2-1-0-6           |
| ll Sem   | PH 447 | Optics + Spectroscopy Lab                  | Department Lab<br>(core)       | 0-0-3-3           |
|          |        | BTP 1 or equivalent elective               | BTP/<br>Department<br>Elective | 2-1-0-6           |
|          |        | Honors Course (must for DD students)       | Department<br>Elective         | 2-1-0-6           |
|          |        |                                            | Total credits: 35 (            | without honors)   |

| Year/Sem | Course code | Title                                |                                | Credits |
|----------|-------------|--------------------------------------|--------------------------------|---------|
|          |             | Department elective 2                | Department<br>Elective         | 2-1-0-6 |
|          |             | BTP 2/Equivalent elective            | BTP/<br>Equivalent<br>Elective | 2-1-0-6 |
| IV Year  |             | Flexible elective 1                  | Flexible<br>Elective           | 2-1-0-6 |
| l Sem    |             | Flexible elective 2                  | Flexible<br>Elective           | 2-1-0-6 |
|          |             | Flexible elective 2                  | Flexible<br>Elective           | 2-1-0-6 |
|          |             | Honors Course (must for DD students) | Department<br>Elective         | 2-1-0-6 |
|          |             | Total credits: 30 (without honors)   |                                |         |
|          |             |                                      |                                |         |
| IV Year  |             | BTP 3/Equivalent elective            | BTP/<br>Equivalent<br>Elective | 2-1-0-6 |
| ll Sem   |             | Flexible elective 3                  | Flexible<br>Elective           | 2-1-0-6 |

| Tota                                 | l credits: 30 (wi | thout honors) |
|--------------------------------------|-------------------|---------------|
| Honors Course (must for DD students) | Elective          |               |
|                                      | Department        |               |
| Department elective 3                | Elective          | 2-1-0-0       |
|                                      | Department        | 2106          |
| Flexible elective 5                  | Elective          | 2100          |
|                                      | Flexible          | 2-1-0-6       |
| Flexible elective 4                  | Elective          | 2-1-0-6       |
|                                      | Flexible          |               |

#### ONLY FOR DD STUDENTS

| Year/Sem | Course code       | Title                                         |                           | Credits         |  |  |
|----------|-------------------|-----------------------------------------------|---------------------------|-----------------|--|--|
|          | PH 575            | Nanoscience: Fundamentals to Fabrication      | Department<br>Core for DD | 2-1-0-6         |  |  |
| V Year   | PH 570            | Advanced Laboratory Techniques in Nanoscience | Department<br>Core for DD | 2-1-0-6         |  |  |
| l Sem    | PH 591            | Dual degree project I (DDP I)                 | Department<br>Core for DD | 30              |  |  |
|          | Total credits: 42 |                                               |                           |                 |  |  |
|          |                   |                                               |                           |                 |  |  |
|          | PH 576            | Nanoscale Quantum Transport                   | Department<br>Core for DD | 2-1-0-6         |  |  |
| V Year   | PH 578            | Nanodevices and Applications                  | Department<br>Core for DD | 2-1-0-6         |  |  |
| ll Sem   | PH 592            | Dual degree project II (DDP II)               | Department<br>Core for DD | 42              |  |  |
|          |                   |                                               | То                        | tal credits: 54 |  |  |

In addition, the DD students need to take 4 electives of their choice plus Supervised Learning Project (SLP) of 6 credits

Total credits (minimum) for 4 Year B. Tech. = 265

Total credits (minimum) for 5 Year B. Tech-M.Tech. = 265+ 126

| Number | Title                                           | Number | Title                                                          |
|--------|-------------------------------------------------|--------|----------------------------------------------------------------|
| PH 505 | Introduction to Nuclear and<br>Particle Physics | PH 567 | Nonlinear Dynamics                                             |
| PH 517 | Methods in Analytical<br>Techniques             | PH 569 | Applied Solid State Physics                                    |
| PH 523 | Quantum Mechanics III                           | PH 575 | Nanoscience: Fundamentals to<br>Fabrication                    |
| PH 543 | Advanced Statistical<br>Mechanics               | PH 813 | Advanced Topics in Astro-<br>Particle Physics                  |
| PH 549 | Physics of Biological Systems                   | PH 815 | Standard Model of Particle<br>Physics                          |
| PH 557 | Theoretical Condensed matter physics            | PH 817 | Specialized Topics in QFT and<br>Beyond Standard Model Physics |
| PH 561 | Ultrafast Sciences                              | PH 819 | Advanced Astrophysics                                          |
| PH 563 | Group Theory Methods in Physics                 | PH 821 | Gravitational Wave Physics and Astronomy                       |
| PH 565 | Semiconductor Physics                           | PH 534 | Quantum Information and<br>Computing                           |

#### List of Electives for ODD (AUTUMN)) semester

#### List of Electives for EVEN (SPRING) semester- Open to all

| PH 500 | Thin film Physics and           | PH 564 | Methods in Experimental      |
|--------|---------------------------------|--------|------------------------------|
| PH 530 | Light Matter Interaction – core | PH 566 | Advanced Simulation          |
|        | for MSc.                        |        | Techniques in Physics        |
|        |                                 | PH 572 | Special Topics in Elementary |
|        |                                 |        | Particle Physics             |
| PH 5/0 | Elementary Particle Physics     |        | Physics of Semiconductor     |
| 111340 |                                 | 111374 | Devices                      |
| PH 544 | General Theory of Relativity    | PH 576 | Nanoscale Quantum Transport  |
| PH 546 | Quantum Optics                  | PH 578 | Nanodevices and Applications |
|        |                                 |        | Magnetism and                |
| PH 550 | Soft Matter Physics             | PH 580 | Superconductivity            |
|        | Computational Many Body         |        | Advanced Quantum             |
| РП 554 | Physics                         |        | Information and Computation  |
| PH 556 | Astrophysics                    | PH 818 | Relativistic Cosmology       |
| PH 562 | Continuum Mechanics             |        |                              |

### **B.Tech. Engineering Physics - Honours**

\* for the award of Honors, a student should take any 4 courses, completing 24 credits.

| SI.<br>No. | Course code | Title                                        | Credits |
|------------|-------------|----------------------------------------------|---------|
| 1          | РН 303      | Supervised Learning (runs in both semesters) | 2-1-0-6 |
| 2          | PH 523      | Quantum Mechanics III                        | 2-1-0-6 |
| 3          | PH 534      | Quantum Information and Computing            | 2-1-0-6 |
| 4          | PH 563      | Group Theory Methods in physics              | 2-1-0-6 |
| 5          | PH 565      | Semiconductor Physics                        | 2-1-0-6 |
| 6          | PH 567      | Non linear Dynamics                          | 2-1-0-6 |
| 7          | PH 562      | Continuum Mechanics                          | 2-1-0-6 |
| 8          | PH 540      | Elementary Particle Physics                  | 2-1-0-6 |
| 9          | PH 557      | Theoretical Condensed matter physics         | 2-1-0-6 |
| 10         | PH 544      | General Theory of Relativity                 | 2-1-0-6 |
| 11         | PH 554      | Computational Many Body Physics              | 2-1-0-6 |
| 12         | PH 564      | Methods in Exp. Nuclear and Particle Physics | 2-1-0-6 |
| 13         | PH 580      | Magnetism and Superconductivity              | 2-1-0-6 |
| 14         | PH 587      | B.Tech. Project I                            | 2-1-0-6 |
| 15         | PH 588      | B.Tech. Project II                           | 2-1-0-6 |

#### **B.Tech. Engineering Physics - Minor**

| SI.<br>No. | Course code | Title                                    | Credits |
|------------|-------------|------------------------------------------|---------|
| 1          | PH 251      | Classical Mechanics                      | 3-1-0-8 |
| 2          | PH 252      | Introduction to Quantum Mechanics        | 2-1-0-6 |
| 3          | PH 253      | Thermal and Statistical Physics          | 2-1-0-6 |
| 4          | PH 352      | Introduction to Condensed Matter Physics | 2-1-0-6 |
| 5          | PH 353      | Light Matter Interaction                 | 2-1-0-6 |

\* for the award of minor, a student should take any 5 courses, completing 30 credits.

Out of the required 5, Classical Mechanics, Quantum mechanics and Thermal & Statistical Phys. are compulsory. The remaining 2 can be taken from the list of department electives as well.

#### Integrated M. Sc. (4 year EP B.Tech. to 5 year integrated M.Sc.)

In addition to the courses/credits required by the B.Tech. EP program, a student needs to complete the following courses: (Credits: 6x6+30+30=96)

| Semester             | Course                               | Credits |  |
|----------------------|--------------------------------------|---------|--|
| VII                  | Extra dept. elective–I               | 2-1-0-6 |  |
| VIII                 | Extra dept. elective -2              | 2-1-0-6 |  |
| IX                   | Extra dept. elective –3              | 2-1-0-6 |  |
|                      | Extra dept. elective -4              | 2-1-0-6 |  |
|                      | Integrated M.Sc. Project I (PH 593)  | 30      |  |
| Х                    | Extra dept. elective –5              | 2-1-0-6 |  |
|                      | Extra dept. elective -6              | 2-1-0-6 |  |
|                      | Integrated M.Sc. Project II (PH 594) | 30      |  |
| <b>Total Credits</b> | Total Credits 96                     |         |  |

# **M.Sc. Physics**

| Year/Sem    | Course<br>code | Course Description     | Credits        |
|-------------|----------------|------------------------|----------------|
|             | PH 401         | Classical Mechanics    | 3-1-0-8        |
|             | PH 403         | Quantum Mechanics I    | 3-1-0-8        |
|             | PH 405         | Electronics            | 2-1-0-6        |
| l Year<br>I | PH 407         | Mathematical Physics I | 3-1-0-8        |
| Semester    | PH 434         | Programming Lab        | 1-0-3-5        |
|             | PH 443         | Electronics Lab        | 0-0-3-3        |
|             |                | Tota                   | al credits: 38 |

| Year/Sem     | Course<br>code | Course Description                       | Credits        |
|--------------|----------------|------------------------------------------|----------------|
|              | PH 408         | Mathematical Physics II                  | 3-1-0-8        |
|              | PH 410         | Statistical Physics                      | 2-1-0-6        |
|              | PH 418         | Introduction to Condensed Matter Physics | 2-1-0-6        |
| I Year<br>II | PH 422         | Quantum Mechanics II                     | 2-1-0-6        |
| Semester     | PH 424         | Electromagnetic Theory I                 | 2-1-0-6        |
|              | PH 441         | General Physics Lab                      | 0-0-3-3        |
|              |                | Tot                                      | al credits: 35 |

| Year/Sem              | Course code | Course Description                              | Credits         |
|-----------------------|-------------|-------------------------------------------------|-----------------|
|                       | РН 505      | Introduction to Nuclear and Particle<br>Physics | 2-1-0-6         |
|                       | PH 515      | Introduction to Atomic and Molecular<br>Physics | 2-1-0-6         |
|                       | PH 512      | Physics Lab (Optics and Spectroscopy)           | 0-0-3-6         |
| ll Year<br>I Semester | PH 595      | M.Sc. Project stage I                           | 0-0-3-6         |
|                       |             | Or<br>Departmental Elective X                   | 2-1-0-6         |
|                       |             | Departmental Elective I                         | 2-1-0-6         |
|                       |             | Department Elective II                          | 2-1-0-6         |
|                       |             | То                                              | tal credits: 36 |

|             | PH 510 | Electromagnetic Theory II | 2-1-0-6        |
|-------------|--------|---------------------------|----------------|
|             | PH 530 | Light Matter Interaction  | 2-1-0-6        |
|             | PH 527 | Physics Lab (SSP and NP)  | 0-0-3-6        |
|             | PH 596 | M.Sc. Project stage II    | 0-0-3-6        |
| ll Year     |        |                           |                |
| II Semester |        | Or                        | 2-1-0-6        |
|             |        | Elective XX               | 2100           |
|             |        | Departmental Elective III | 2-1-0-6        |
|             |        | Departmental Elective IV  | 2-1-0-6        |
|             |        | Tota                      | al credits: 36 |

#### **Total Credits: 145**

#### No. of Dept. electives required: 6 (including Projects)

## For MSc.-PhD students only

| III Year<br>I Semester |        | Extra elective 1        | 2-1-0-6        |
|------------------------|--------|-------------------------|----------------|
|                        |        | Extra elective 2        | 2-1-0-6        |
|                        | PH 555 | M.Sc. Project stage III | 24             |
|                        |        | Tota                    | al credits: 36 |

| III Year    | PH 899 | Communications skills | P/NP |
|-------------|--------|-----------------------|------|
| II Semester |        |                       |      |

#### List of prescribed courses under Electives X, I, II (odd semester)

| Number | Title                                | Number | Title                                                          |
|--------|--------------------------------------|--------|----------------------------------------------------------------|
| PH 517 | Methods in Analytical<br>Techniques  | PH 567 | Nonlinear Dynamics                                             |
| PH 523 | Quantum Mechanics III                | PH 569 | Applied Solid State Physics                                    |
| PH 543 | Advanced Statistical<br>Mechanics    | PH 575 | Nanoscience: Fundamentals to<br>Fabrication                    |
| PH 549 | Physics of Biological Systems        | PH 813 | Advanced Topics in Astro-<br>Particle Physics                  |
| PH 557 | Theoretical Condensed matter physics | PH 815 | Standard Model of Particle<br>Physics                          |
| PH 561 | Ultra-fast Sciences                  | PH 817 | Specialized Topics in QFT and<br>Beyond Standard Model Physics |
| PH 563 | Group Theory Methods in<br>Physics   | PH 819 | Advanced Astrophysics                                          |
| PH 565 | Semiconductor Physics                | PH 821 | Gravitational Wave Physics and Astronomy                       |
| PH 534 | Quantum Information and<br>Computing |        |                                                                |

#### List of prescribed courses under Elective XX, III, IV (even semester)

| PH 500 | Thin film Physics and<br>Technology | PH 564 | Methods in Experimental<br>Nuclear and Particle Physics |
|--------|-------------------------------------|--------|---------------------------------------------------------|
|        |                                     | PH 572 | Special Topics in Elementary<br>Particle Physics        |
| PH 540 | Elementary Particle Physics         | PH 574 | Physics of Semiconductor<br>Devices                     |
| PH 544 | General Theory of Relativity        | PH 576 | Nanoscale Quantum Transport                             |
| PH 546 | Quantum Optics                      | PH 578 | Nanodevices and Applications                            |
| PH 550 | Soft Matter Physics                 | PH 580 | Magnetism and<br>Superconductivity                      |
| PH 554 | Computational Many Body<br>Physics  | PH 601 | Advanced Quantum<br>Information and Computation         |
| PH 556 | Astrophysics                        | PH 818 | Relativistic Cosmology                                  |
| PH 562 | Continuum Mechanics                 |        |                                                         |

# Ph.D. courses (Jan 2019 onwards)

| Group A                                                  | Group B                                                      |
|----------------------------------------------------------|--------------------------------------------------------------|
| ODD SEMESTER (July)                                      | ODD SEMESTER (July)                                          |
| Physics of Semiconductor Devices - PH 574                | Methods in Analytical Techniques – PH 517                    |
| Mathematical Physics- I – PH 407 (8 credits)             | Advanced Statistical Mechanics – PH 543                      |
| Quantum Mechanics III -PH 523                            | Applied Solid State Physics – PH 569                         |
| Non-linear Dynamics – PH 567                             | Ultrafast Sciences - PH 561                                  |
| Introduction to Atomic and Molecular<br>Physics - PH 515 | Group Theoretical Methods in Physics- PH 563                 |
| Introduction to Nuclear and particle<br>Physics- PH 505  | Physics of Biological Systems - PH 549                       |
| Theoretical Condensed Matter Physics- PH 557             | Data Analysis and Interpretation- PH 219                     |
| Methods in Analytical Techniques – PH 517                | Advanced Topics in Astro-particle Physics-<br>PH 813         |
|                                                          | Standard Model of Particle Physics- PH 815                   |
|                                                          | Specialized Topics in QFT and Beyond                         |
|                                                          | Standard Model Physics – PH 817                              |
|                                                          | Advanced Astrophysics – PH 819                               |
|                                                          | Gravitational Wave Physics and Astronomy-<br>PH 821          |
|                                                          | Quantum Information and Computing – PH 534                   |
|                                                          |                                                              |
| EVEN SEMESTER (January)                                  | EVEN SEMESTER (January)                                      |
| Introduction to Condensed Matter Physics<br>– PH 418     |                                                              |
| Quantum Mechanics II – PH 422                            | Physics of Quantum Devices – PH 536                          |
| Electromagnetic Theory II -PH510                         | Elementary Particle Physics – PH 540                         |
| Mathematical Physics II - PH 408 (8 credits)             |                                                              |
| Laboratory Techniques- PH 804 (8 credits)                | Methods in Experimental Nuclear and Particle Physics- PH 564 |
| Astrophysics – PH 556                                    | Thin film Physics and Technology – PH 500                    |
| Programming Lab- PH 434 (5 credits)*                     |                                                              |
| Light Matter Interaction – PH 530                        | Special topics in Elementary Particle Physics<br>-PH 572     |
|                                                          | Computational Many Body Physics- PH 554                      |
| Continuum Mechanics -PH 562                              | Soft Matter Physics – 550                                    |

| Statistical Physics - PH 410               | General Theory of Relativity- PH 544    |
|--------------------------------------------|-----------------------------------------|
| Advanced Simulation Techniques in Physics- | Quantum Optics – PH 546                 |
| PH 566*                                    |                                         |
|                                            | Magnetism and Superconductivity- PH 580 |
|                                            | Advanced Quantum Information and        |
|                                            | Computation – PH 601                    |
|                                            | Relativistic Cosmology – PH 818         |

\*You can take either one of these two.

PhD students with M.Sc. have to complete 34 credits. This includes 4 credits of a seminar course (PHS 801/802). Regarding the theory courses, you have to take at least 2 from each of the two groups. One course can be taken from outside the dept. In addition, all Ph.D. students should pass HS 791+PH 792 in their first year. Those with M.Tech./M.E need to do only 16 credits, while those with B.Tech./B.E./B.S. need to do 44 credits. The credits requirements for PMRFs are the same as those of other students.

### **B. Tech. Course Contents**

#### First Year, First Semester

| Course Name    | Biology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | BB 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Total Credits  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Туре           | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lecture        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tutorial       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Practical      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Half Semester  | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Description    | Quantitative views of modern biology. Importance of illustrations and building<br>quantitative/qualitative models. Role of estimates. Cell size and shape. Temporal<br>scales. Relative time in Biology. Key model systems - a glimpse. Management and<br>transformation of energy in cells. Mathematical view - binding, gene expression<br>and osmotic pressure as examples. Metabolism. Cell communication. Genetics.<br>Eukaryotic genomes. Genetic basis of development. Evolution and diversity.<br>Systems biology and illustrative examples of applications of Engineering in Biology. |
| Text Reference | Physical Biology of the Cell, R. Phillips, J. Kondev and J. Theriot. Garland science<br>publishers. 2008. 1st edition.<br>Campbell Biology, J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V.<br>Minorsky, R. B. Jackson. Benjamin Cummings publishers. 2010. 9th edition.                                                                                                                                                                                                                                                                                                           |

| Course Name   | Calculus |
|---------------|----------|
| Course Code   | MA 105   |
| Total Credits | 8        |
| Туре          | Т        |
| Lecture       | 3        |
| Tutorial      | 1        |
| Practical     | Ν        |
| Half Semester | Ν        |

| Description    | Review of limits, continuity, differentiability. Mean value theorem, Taylors<br>Theorem, Maxima and Minima. Riemann integrals, Fundamental theorem of<br>Calculus, Improper integrals, applications to area, volume. Convergence of<br>sequences and series, power series. Partial Derivatives, gradient and directional<br>derivatives, chain rule, maxima and minima, Lagrange multipliers. Double and<br>Triple integration, Jacobian and change of variables formula. Parametrization of<br>curves and surfaces, vector Fields, line and surface integrals. Divergence and curl,<br>Theorems of Green, Gauss, and Stokes. |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Reference | <ol> <li>Hughes-Hallett et al., Calculus - Single and Multivariable (3rd Edition), John-Wiley and Sons (2003).</li> <li>James Stewart, Calculus (5th Edition), Thomson (2003).</li> <li>T. M. Apostol, Calculus, Volumes 1 and 2 (2nd Edition), Wiley Eastern 1980.</li> <li>G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry (9th Edition), ISE Reprint, Addison-Wesley, 1998.</li> </ol>                                                                                                                                                                                                                       |

| Course Name    | Fundamental Themes in Physics (DIC 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | PH 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Credits  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Туре           | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lecture        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tutorial       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Practical      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Half Semester  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Description    | Physics of Ancient Times: Laws of lever, Archimedean screw, Archemedes<br>principle, Spherical shape of earth, Determination of radius of earth, Planets vs<br>stars, distances to planets 2. Heliocentric Theory: Copernicus model, Kepler's<br>laws, Newton's law of universal gravitation 3. Newtonian Mechanics: Newton's<br>laws of motion, Application to rigid bodies, Application to continuous systems,<br>Mechanical view of universe 4. Thermodynamics: Energy conservation and first<br>law of thermodynamics, One way flow of heat and second law of thermodynamics<br>5. Field Point of View: The development of the concept of field, Faraday's law of<br>induction, Maxwell's equations and the unification of electricity, magnetism and<br>optics. Man-made electromagnetic waves, wireless communication and<br>development of electronics, Path to special relativity 6. Quantum Ideas: Early<br>radiation theories and ultraviolet catastrophe, Planck radiation formula,<br>photoelectric effect and photon hypothesis, Bohr atom and de Broglie hypothesis |
| Text Reference |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Course Name    | Chemistry Lab                                                             |
|----------------|---------------------------------------------------------------------------|
| Course Code    | CH 117                                                                    |
| Total Credits  | 3                                                                         |
| Туре           | Т                                                                         |
| Lecture        | 0                                                                         |
| Tutorial       | 0                                                                         |
| Practical      | 3                                                                         |
| Half Semester  | Ν                                                                         |
| Description    | 1. Electrochemical Cell                                                   |
|                | (A) To measure the standard electrode potential of Zn2+ / Zn couple. (B)  |
|                | To determine the concentration of Fe2+ by potentiometric titration.       |
|                | 2. Chemical kinetics                                                      |
|                | To determine the rate constant for the inversion of sucrose using a       |
|                | polarimeter.                                                              |
|                | 3. Estimation of Iron                                                     |
|                | To estimate the amount of ferrous and ferric ion in a solution containing |
|                | both.                                                                     |
|                | 4. Oscillatory Chemical Reactions                                         |
|                | a) To introduce the students to a fascinating example of an oscillating   |
|                | chemical reaction.                                                        |
|                | b) To introduce the concept of non-equilibrium thermodynamics.            |
|                | c) To speculate on the possible causes and applications of oscillating    |
|                | chemical phenomena.                                                       |
|                | 5. Electrolytic Conductance                                               |
|                | (A) To determine the ionization constant of weak monobasic acid.          |
|                | (B) To determine the solubility of a sparingly soluble salt.              |
|                | 6. Colorimetric Analysis                                                  |
|                | To determine the equilibrium constant of a reaction with the help of a    |
|                | colorimeter.                                                              |
|                | 7. Complexometric Titration                                               |
|                | Determination of total hardness of water using complexometric titration   |
|                | with Ethylenediaminetetraacetic Acid (EDTA).                              |
|                | 8. Thin Layer Chromatography                                              |
|                | (A) To prepare a fluorescent dye in microscale using a one pot sequential |
|                | amide formation – nucleophilic aromatic substitution reactions.           |
|                | (B) To understand the principles and application of Thin Layer            |
|                | Chromatography.                                                           |
|                | (C) Analysis of TLC using 'ImageJ'.                                       |
| Text Reference | 1. Lab Manual                                                             |

### First Year, Second Semester

| Course Name    | Computer Programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | CS 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Credits  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Туре           | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lecture        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tutorial       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Practical      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Half Semester  | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Description    | This course provides an introduction to problem solving with computers using a modern language such as Java or C/C++. Topics covered will include: * Utilization: Developer fundamentals such as editor, integrated programming environment, Unix shell, modules, libraries. * Programming features: Machine representation, primitive types, arrays and records, objects, expressions, control statements, iteration, procedures, functions, and basic i/o. * Applications: Sample problems in engineering, science, text processing, and numerical methods. |
|                | Hours: 2 lectures (55 minutes each),<br>2 hours of laboratory time which will include practice on computers.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | <u>Description</u> : This course provides an introduction to problem solving with computers using a modern language such as Java or C/C++. Topics covered will include:                                                                                                                                                                                                                                                                                                                                                                                       |
|                | A. Utilization: Developer fundamentals such as editor, integrated programming environment, Unix shell, modules, libraries.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | B. Programming features: Machine representation, primitive types, arrays and records, objects, expressions, control statements, iteration, procedures, functions, and basic i/o.                                                                                                                                                                                                                                                                                                                                                                              |
|                | C. Sample problems in engineering, science, text processing, and numerical methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Text Reference | <ul> <li>1.* C++ Program Design: An introduction to Programming and Object-Oriented Design, 3rd Edition, by Cohoon and Davidson, Tata McGraw Hill. 2003.</li> <li>Other references (Not required reading)*</li> <li>2. Thinking in C++ 2nd Edition by Bruce Eckel (available online)*G. Dromey,</li> </ul>                                                                                                                                                                                                                                                    |
|                | 3. How to Solve It by Computer, Prentice-Hall, Inc., Upper Saddle River, NJ, 1982.*<br>Polya, G.,                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 4. How to Solve _It (2nd ed.), Doubleday and co. (1957) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | 5. Let US C. Tastiwani, Kanetkar, Anieu Publishers, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | <ul> <li>7. C++ Program Design: An introduction to Programming and Object-Oriented</li> <li>Design, 3rd Edition, by Cohoon and Davidson. Tata McGraw Hill. 2003.</li> <li>8 A First Book of C++ 2nd Ed by Gary Bronson, Brooks/Cole, Thomson Learning</li> </ul>                                                                                                                                                                                                                                                                                              |

| Course Name    | Linear Algebra and Differential Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | MA 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total Credits  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Туре           | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lecture        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tutorial       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Practical      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Half Semester  | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Description    | Vectors in S mathbb R nS, linear independence and dependence, linear span of a set of vectors, vector subspaces of S mathbb R n S, basis of a vector subspace. Systems of linear equations, matrices and Gauss elimination, row space, null space, and column space, rank of a matrix. Determinants and rank of a matrix in terms of determinants. Abstract vector spaces, linear transformations, matrix of a linear transformation, change of basis and similarity, rank-nullity theorem. Inner product spaces, Gram-Schmidt process, orthonormal bases, projections and least squares approximation. Eigenvalues and eigenvectors, characteristic polynomials, eigenvalues of special matrices (orthogonal, unitary, hermitian, symmetric, skew-symmetric, normal), algebraic and geometric multiplicity, diagonalization by similarity transformations, spectral theorem for real symmetric matrices, application to quadratic forms. Exact equations, integrating factors and Bernoulli equations. Orthogonal trajectories. Lipschitz condition, Picard's theorem, examples of non-uniqueness. Linear differential equations generalities. Linear dependence and Wronskians. Dimensionality of space of solutions, Abel-Liouville formula. Linear ODE with constant coefficients, characteristic equations. Cauchy-Euler equations. Method of undetermined coefficients. Method of variation of parameters. Laplace transform generalities. Shifting theorems. |
| Text Reference | <ol> <li>H. Anton, Elementary Linear Algebra with Applications (8th Edition), John Wiley,<br/>1995.</li> <li>G. Strang, Linear Algebra and its Applications (4th Edition), Thomson, 2006. 3. S.<br/>Kumaresan, Linear algebra - A Geometric Approach, Prentice Hall of India, 2000.</li> <li>E. Kreyszig, Advanced Engineering Mathematics (8th Edition), John Wiley, 1999.</li> <li>W. E. Boyce and R. DiPrima, Elementary Differential Equations (8th Edition),<br/>John Wiley, 2005.</li> <li>T. M. Apostol, Calculus, Volume 2 (2nd Edition), Wiley Eastern, 1980</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Course Name   | Introduction to Classical and Quantum Physics |
|---------------|-----------------------------------------------|
| Course Code   | PH 110                                        |
| Total Credits | 8                                             |
| Туре          | Т                                             |
| Lecture       | 3                                             |
| Tutorial      | 1                                             |

| Practical      | 0                                                                                                                                                                                                                                                                                                                               |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Half Semester  | N                                                                                                                                                                                                                                                                                                                               |
| Description    | Dynamics with plane polar coordinates, Dynamics in rotating frames, Special<br>theory of relativity, de Broglie hypothesis, Fourier analysis, Heisenberg<br>Uncertainty Principle, Schrodinger equation in one dimension, infinite potential<br>well and other bound state problems, scattering in one dimension and tunneling. |
| Text Reference | <ol> <li>Modern Physics R.A. Serway, C. J. Moses and C. A. Moyer (third edition, 2005)<br/>Thomson Learning</li> <li>Introduction to Mechanics by D. Kleppner and R.J.Kolenkow, (2007) Tata<br/>McGraw Hill</li> </ol>                                                                                                          |

| Course Name    | Physics Lab                                        |
|----------------|----------------------------------------------------|
| Course Code    | PH 117                                             |
| Total Credits  | 3                                                  |
| Туре           | Т                                                  |
| Lecture        | 0                                                  |
| Tutorial       | 0                                                  |
| Practical      | 3                                                  |
| Half Semester  | Ν                                                  |
| Description    | 1. Laser diffraction                               |
|                | 2. Thermal conductivity                            |
|                | 3. LCR bridge                                      |
|                | <ol><li>Determination of e/m of electron</li></ol> |
|                | 5. Grating Spectrometer                            |
|                | 6. Fresnel's Bi-prism                              |
|                | 7. Measurement of centrifugal force                |
|                | 8. Torque on a current loop                        |
|                | 9. Hydrogen spectrum                               |
| Text Reference | 1. Lab Manual                                      |
|                | 2. Advanced Practical Physics, Worsnop and Flint   |

#### Second Year, First Semester

| Course Name   | Economics |
|---------------|-----------|
| Course Code   | EC 101    |
| Total Credits | 6         |
| Туре          | Т         |
| Lecture       | 2         |
| Tutorial      | 1         |
| Practical     | 0         |
| Half Semester | N         |

| Description    | Basic economic problems. resource constraints and Welfare maximizations.          |
|----------------|-----------------------------------------------------------------------------------|
|                | Nature of Economics : Positive and normative economics; Micro and                 |
|                | macroeconomics, Basic concepts in economics. The role of the State in economic    |
|                | activity; market and government failures; New Economic Policy in India. Theory of |
|                | utility and consumer"s choice. Theories of demand, supply and market              |
|                | equilibrium. Theories of firm, production and costs. Market structures. Perfect   |
|                | and imperfect competition, oligopoly, monopoly. An overview of macroeconomics,    |
|                | measurement and determination of national income. Consumption, savings, and       |
|                | investments. Commercial and central banking. Relationship between money,          |
|                | output and prices. Inflation - causes, consequences and remedies. International   |
|                | trade, foreign exchange and balace payments, stabilization policies : Monetary,   |
|                | Fiscal and Exchange rate policies.                                                |
| Text Reference | P. A. Samuelson & W. D. nordhaus, Economics, McGraw Hill, NY, 1995.               |
|                | A. Koutsoyiannis, Modern Microeconomics, Macmillan, 1975.                         |
|                | R. Pindyck and D. L. Rubinfeld, Microeconomics, Macmillan publishing company,     |
|                | NY, 1989.                                                                         |
|                | R. J. Gordon, Macroeconomics 4th edition, Little Brown and Co., Boston, 1987.     |
|                | William F. Shughart II. The Organization of Industry. Richard D. Irwin. Illinois  |
|                |                                                                                   |
|                |                                                                                   |

| Course Name   | Oscillations and waves (DIC 2 PART 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code   | PH 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Credits | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Туре          | T (half semester)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lecture       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tutorial      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Practical     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Half Semester | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Description   | Waves & Oscillations: Simple Harmonic motion, damped SHM, critical damping,<br>Sustaining oscillations in a damped oscillator. Driven oscillation, resonance,<br>damped-driven oscillator and its resonance, Q-factor, Vanderpol oscillator, non-<br>linear feedback for sustained oscillations. SHM in 2-dim, dependence on initial<br>conditions, Lissajous figures, condition for closed orbits, SHM in 3-dim. Oscillations<br>of two particle systems, symmetric and asymmetric modes, general solution to the<br>problem. Driven oscillations of two particle system. Oscillations of `n` particle<br>systems, normal modes, Formulation of the general problem, eigenvalues and<br>eigenvectors of normal modes, general solution for arbitrary initial conditions.<br>Driven oscillations. Example of a linear triatomic molecule. Longitudinal and<br>transverse oscillations, modding out the zero frequencies. Oscillations of a chain<br>of `n` atoms. Continuum limit, vibrational modes of a string of constant density.<br>Equation of Motion for waves. Standing waves and travelling waves in 1 |

|                | dimensions. Properties of waves in two and three dimensions Harmonics, Linear<br>superposition of harmonics, odd harmonics, construction of pulse shapes. Fourier<br>components of a periodic pulse, Fourier analysis and Fourier coefficients. Fourier<br>analysis of arbitrary functions, Fourier Coefficients, Properties of Fourier<br>transform. |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Reference | 1. Berkeley Physics Course (Vol 3)                                                                                                                                                                                                                                                                                                                    |
|                | 2. Waves by Frank S. Crawford                                                                                                                                                                                                                                                                                                                         |
|                | <ol> <li>Introduction to Mechanics by D. Kleppner and R. J. Kolenkow (for topics 1<br/>and 2)</li> </ol>                                                                                                                                                                                                                                              |
|                | 4. Introduction to Non-linear Dynamics by Steven Strogatz (for topics 3)                                                                                                                                                                                                                                                                              |
|                | 5. Mechanics, Landau and Lifshitz (for topics 4 to 7)                                                                                                                                                                                                                                                                                                 |
|                | <ol> <li>Mathematical Methods for Physicists, G. Arfken and Weber (for topics 11<br/>to 13)</li> </ol>                                                                                                                                                                                                                                                |

| Course Name    | Thermal Physics (DIC 2 PART 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | PH 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Credits  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Туре           | T (half semester)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lecture        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tutorial       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Practical      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Half Semester  | Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Description    | Thermal equilibrium, zeroth law and concept of temperature. First law and its consequences, reversible, irreversible and quasi-static processes. Second law: heat engines, concept of entropy and its statistical interpretation. Thermodynamic potentials, Maxwell's relations. Joule Kelvin effect. Phase transitions, order of phase transitions, order parameter, critical exponents and the Clausius-Clapeyron equation. Applications to magnetism, superfluidity and superconductivity. |
| Text Reference | <ol> <li>An Introduction to Thermal Physics: D.V. Schroeder, Addison Wesley 1999, 2nd<br/>Edition.</li> <li>Heat and Thermodynamics: M.W.Zemansky and R.H.Dittman, McGraw Hill<br/>1997, 7th edition.</li> <li>Equilibrium Thermodynamics: C.J.Adkins, Cambridge University Press, 1983, 3rd<br/>edition.</li> </ol>                                                                                                                                                                          |

| Course Name   | Classical Mechanics |
|---------------|---------------------|
| Course Code   | PH 217              |
| Total Credits | 6                   |
| Туре          | Т                   |
| Lecture       | 2                   |

| Tutorial       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Practical      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Half Semester  | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Description    | Review of Newton's laws of motion, frames of reference, rotating frames,<br>centrifugal and Coriolis forces. Free and constrained motion, D'Alemberts<br>principle and Lagrange's equation of first kind. Lagrangian formulation, Hamilton's<br>equation of motion. Variational principles. Canonical transformation and Poisson<br>Bracket. Hamilton Jacobi theory and action angle variables. Periodic motion, small<br>oscillations, normal coordinates, Central force, Kepler's Laws and Rutherford<br>scattering. |
| Text Reference | <ol> <li>H. Goldstein, Classical Mechanics, Addison Wesley 1980</li> <li>N. C. Rana and P. S. Joag, Classical Mechanics, Tata McGraw Hill 1991</li> <li>L. D. Landau and E. M. Lifshitz, Pergamon Press 1960</li> <li>V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer<br/>Verlag 1981</li> <li>S. N. Biswas, Classical Mechanics 1998</li> </ol>                                                                                                                                                   |

| Course Name   | Complex Analysis and Integral Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code   | PH 223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Credits | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Туре          | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lecture       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tutorial      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Practical     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Half Semester | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Description   | Part A (60% of the course): Complex analysis 12) Complex numbers z. Complex<br>plane. Triangle inequalities. 13) Continuity, Differentiability, Continuity and<br>existence of partial derivatives, Cauchy-Riemann conditions, pure complex<br>function of z. 14) Analyticity. Single value. Cauchy's theorem. Complex Taylor<br>Series. Convergence and domains of analyticity. Order of zeros. 15) Cauchy<br>integral formula, and derivation of Laurent Series. Calculation of Residues. 16)<br>Meromorphic functions and order of poles, Branch singularities, Essential<br>singularities. 17) Residue theorem. Cauchy's argument principle. 18) Various types<br>of contour integrals — semicircles, rectangular, conical. Case of poles on real line.<br>19) Branch Points and branch cuts. Integrals involving branch singular integrands.<br>20) Shapes of complex functions and Saddles. Darboux's inequality. Proofs of<br>impossibility of local maxima and minima. Impossibly of entire & bounded<br>function. 21) Asymptotic analysis: Laplace's method, stationary phase, and<br>method of steepest descent. 22) Conformal Mapping and properties. Linear and<br>Inversion map and their geometric effects on lines and circles. Application to 2d<br>electrostatics. Logarithmic map. Homographic transformations and cross-ratio<br>preservation. Part B (40% of the course): Function spaces, Integral transforms and |

|                | some Differential equations 7. Infinite dimensional vector spaces or function         |
|----------------|---------------------------------------------------------------------------------------|
|                | spaces. Inner product, and weight function. The problem of completeness.              |
|                | Riemann to Lebesgue integrals, and Lebesgue space. Reisz-Fisher theorem. Bessel       |
|                | inequality, and Perseval's equality. Hilbert space. 8. Weierstrass's theorem and      |
|                | polynomial basis. Orthonormalization of polynomials using Schmidt method.             |
|                | Generalized Rogrigues's formula and 3 classes of classical polynomials. 9. Good,      |
|                | fairly good, and generalized distributions (namely, Dirac delta). Continuous index    |
|                | basis and use of Dirac delta. Identity operator and completeness relation of          |
|                | polynomials. 10. Fourier series as a basis expansion. Fourier cosine and sine series. |
|                | Fourier transforms. Plancherel-Parseval relations. Meaning of Fourier transforms      |
|                | of generalized functions like Dirac delta where Parseval relation fails. 11. Examples |
|                | of Fourier transform calculations — reminding complex analysis. Transforms of         |
|                | derivatives and derivatives of transforms. Solving linear ODEs, and PDEs (like        |
|                | diffusion equation) using Fourier transform. Convolution theorem. 12. Laplace         |
|                | transforms. Examples. Derivatives of transforms and transforms of derivatives.        |
|                | Shifting properties. Solution of linear ODEs and PDEs. Convolution theorem.           |
|                | Inverse Laplace transforms, Bromwich integrals and contour integration.               |
| Text Reference | Mathematics for Physicists P. Dennery and A. Krzywicki, Dover Books                   |
|                | Mathematical Methods for Physicists G. B. Arfken and H. J. Weber, Elsevier Press      |

| Course Name   | AI and Data Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code   | PH 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total Credits | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Туре          | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lecture       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tutorial      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Practical     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Half Semester | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | <ul> <li>Data Science: Introduction to data driven systems and examples. Bayesian vs. Frequentist statistics. Random variables, probability distribution with continuous and discrete outcomes, common distribution functions. Moments and moment generating function. Central limit theorem, parameter Inference: maximum likelihood method and confidence interval.</li> <li>Hypothesis testing: Test statistic, chi-squared test, p-value test. Introduction to linear models, simple and multiple linear regression, logistic regression.</li> </ul>                                                                                 |
|               | Machine Learning: What is learning? Learning objective, data needed. Introduction to supervised learning, training validation and testing (including loss function) - (i) Decision trees and support vector machines (SVM), classification and regression trees (CART) – growing trees, variable importance measure (ii) Random Forests - separating hyperplane, maximum margin classifier, support vector classifier. (iii) Introduction to deep learning: Definition and types of neurons, neural network architecture, cost function, feed forward neural network, back propagation algorithm. Artificial Neural networks (ANN), Deep |

|                | Neural Networks, Convolution Neural Networks (CNN). Applications of neural networks<br>(deep learning) in optimization, regression and model building. Multivariate analysis and<br>dimension reduction. Singular Value Decomposition (SVD), Principal Component Analysis<br>(PCA) etc. |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Reference | Introduction to Statistics and Data Analysis for Physicists by Gerhard Bohm and Gunter<br>Zech (URL : https://s3.cern.ch/inspire-prod-files-<br>d/da9d786a06bf64d703e5c6665929ca01)<br>Introduction to Probability and Statistics for Engineers and Scientists by Sheldon M. Ross       |
|                | (URL: https://minerva.it.manchester.ac.uk/~saralees/statbook3.pdf) Pattern Recognition<br>and Machine Learning by C. M. Bishop (URL: https://readyforai.com/download/pattern-<br>recognition-and- machine-learning-pdf/)                                                                |
|                | Neural Networks and deep learning, Web book<br>(URL: http://neuralnetworksanddeeplearning.com/index.html)                                                                                                                                                                               |

| Course Name    | Analog Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | PH 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Credits  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Туре           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lecture        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tutorial       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Practical      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Half Semester  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Description    | 1. Fundamentals of semiconductor of device physics 2. Electronic signal transmission in circuits in time and frequency domain 3. Operational characterization of diodes and transistors performance. 4. Use of a transistor as a switch 5. Study linear amplification mode of transistor with some applications including: a. voltage amplification b. power amplification 6. Opamps – Design characteristics 7. Typical opamp application circuits including: a. Inverting, Non-inverting voltage amplification b. Transimpedance amplifiers to measure signals from typical transducers like photo-diodes, thermocouples etc c. Instrumentation amplifier and/or Lock-in amplifier Feedback control circuit using the PID (Proportional-Integrative-Differential) algorithm |
| Text Reference | Microelectronics, Jacob Millman and Arvin Grabel, McGraw-Hill Education, 2nd<br>edition<br>Building Scientific Apparatus John H. Moore and Cristopher C. Davis, Cambridge<br>University Press011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
### Second Year, Second Semester

| Course Name    | Statistical Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | PH 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Credits  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Туре           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lecture        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tutorial       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Practical      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Half Semester  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Prerequisite   | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Description    | 1)Random walk, gaussian statistics and diffusion.2) Statistical ensembles: a) phase<br>space, ergodicity, microcanonical ensemble, Liouville's theorem, Ideal-gas. b)<br>canonical ensemble, partition function c) grand-canonical ensemble, equivalence<br>of ensembles, 3) Quantum statistical Mechanics: density matrix, Boltzmann, Bose<br>& Fermi statistics.4) Fermi gas: high and low temp limits, electrons in magnetic<br>field, para and diamagnetism.5) Bose gas: black body radiation, phonons, B.E.<br>condensation. |
| Text Reference | <ol> <li>K. Huang, Statistical Mechanics, John Wiley 1987</li> <li>R. K. Pathria, Statistical Mechanics, Butterworth Heinemann 1996</li> <li>J. Bhattacharjee, Statistical mechanics, Allied Publishers 1996</li> </ol>                                                                                                                                                                                                                                                                                                           |

| Course Name    | Quantum Mechanics 1                                                                                                                                                                                                                                             |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | PH 225                                                                                                                                                                                                                                                          |
| Total Credits  | 8                                                                                                                                                                                                                                                               |
| Туре           | Т                                                                                                                                                                                                                                                               |
| Lecture        | 3                                                                                                                                                                                                                                                               |
| Tutorial       | 1                                                                                                                                                                                                                                                               |
| Practical      | 0                                                                                                                                                                                                                                                               |
| Half Semester  | Ν                                                                                                                                                                                                                                                               |
| Description    | Review quantum ideas using wavefunction formalism; Linear vector spaces and Dirac bra(ket) notation; Operators, state vector approach of harmonic oscillator; Hydrogen atom; angular momentum, spin, addition of angular momentum, Clebsch-Gordan coefficients. |
| Text Reference | <ol> <li>Principles of Quantum Mechanics, R. Shankar,</li> <li>Introduction to Quantum Mechanics by Griffiths, Modern Quantum</li> </ol>                                                                                                                        |

| 3. | Mechanics, J. J. Sakurai                                            |
|----|---------------------------------------------------------------------|
| 4. | Quantum Mechanics by C. Cohen-Tannoudji and F. Lalo e for reference |
|    | material.                                                           |
| 5. | L. D. Landau and E. M. Lifshitz, Pergamon Press 1965                |

| Course Code:   | PH 312                                                                                                                                                                                                                                                                                                         |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:         | Electromagnetic Theory                                                                                                                                                                                                                                                                                         |
| Credits:       | 8                                                                                                                                                                                                                                                                                                              |
| Туре           | Т                                                                                                                                                                                                                                                                                                              |
| Lecture        | 3                                                                                                                                                                                                                                                                                                              |
| Tutorial       | 1                                                                                                                                                                                                                                                                                                              |
| Practical      | 0                                                                                                                                                                                                                                                                                                              |
| Half semester  | Ν                                                                                                                                                                                                                                                                                                              |
| Description:   |                                                                                                                                                                                                                                                                                                                |
|                | Divergence and curl of the electrostatic field. Electrostatic potential, Laplace and<br>Poisson's equation. Solving Laplace's equation in Cartesian and Spherical Polar (revision<br>only). Solution in cylindrical co-ordinates with examples. Use of Bessel functions.                                       |
|                | Solving Green's functions with images, eigenfunction expansion of Dirac delta function.                                                                                                                                                                                                                        |
|                | Multipole moment upto dipole and quadrupole potentials. Interaction energy of a charge distribution with an external field.                                                                                                                                                                                    |
|                | Dielectrics and polarization, E, P and D vectors. Boundary conditions. Magnetic fields and vector potential, induced currents, magnetic materials, B,H and M vectors.                                                                                                                                          |
|                | Electromagnetic induction, Faraday's laws and Maxwell's correction to ampere's law.<br>Maxwell's equations. Energy of the EM field, Poynting theorem and energy transport.<br>Momentum transport, Electromagnetic stress tensor.                                                                               |
|                | Electromagnetic waves. Reflection and refraction of EM waves at boundaries of dielectrics<br>and metals. Derivation of the laws of reflection and refraction. Quantitative calculation of<br>the reflected and transmitted intensities. Total internal reflection and evanescent waves.<br>Radiation pressure. |
|                | Electrodynamics, gauge freedom, derivation of the retarded potentials via Green's function. Lenard-Wiechart potentials of a moving point charge. Electric and magnetic fields of a moving charge. Equivalence with Lorenz transformation/ Special relativity.                                                  |
|                | Electromagnetic radiation due to oscillating electric dipole. The near and far fields and their relevance. Magnetic dipole radiation. Radiation due to accelerating point charge, Brehmstralung and energy loss. Radiation retardation and its relevance                                                       |
| Text/Reference | Introduction to Electrodynamics                                                                                                                                                                                                                                                                                |

| D. J. Griffiths, 4 <sup>th</sup> edition Prentice Hall India Pvt Ltd                     |
|------------------------------------------------------------------------------------------|
| Feynman Lectures vol II                                                                  |
| R. P. Feynman, R. B. Leighton, M. Sands Narosa Publishing House                          |
| Classical Electricity and Magnetism                                                      |
| W.K.H. Panofsky, M. Philips Dover Books (2012)                                           |
| Modern Electrodynamics                                                                   |
| A. Zangwill                                                                              |
| Cambridge University Press (2020)                                                        |
| Electricity and Magnetism                                                                |
| A.S. Mahajan and A.A. Rangwala McGraw Hill Education (2017)                              |
| Foundations of Electromagnetic Theory                                                    |
| J.R. Reitz, F.J. Milford and R.W. Christy Addison-Wesley/ Narosa Publishing House (1992) |
|                                                                                          |

| Course Name   | Digital Electronics and Microprocessors (lecture + lab)                             |
|---------------|-------------------------------------------------------------------------------------|
| Course Code   | PH 222                                                                              |
| Total Credits | 3                                                                                   |
| Туре          | L                                                                                   |
| Lecture       | 1                                                                                   |
| Tutorial      | 0                                                                                   |
| Practical     | 2                                                                                   |
| Half Semester | N                                                                                   |
| Description   | Digital electronics: Theory includes (1) Boolean algebra Basic gates (2)            |
|               | Combinational logic (3) Sequential logic (4) Finite State Machines (5) Karnaugh     |
|               | maps. Laboratory: Each of the theory topics is developed in a lab assignment        |
|               | Microprocessors: (1) Architecture of microprocessors, with focus on the hardware    |
|               | design and application to control of physics experiments (2) Digital input/output   |
|               | systems (3) analog-to-digital and digital-to-analog conversion (4) Interrupts. Each |
|               | of these concepts is developed using laboratory assignments on the Arduino          |
|               | microcontroller platform. Course project: Culminates in a student ideated project   |
|               | that combines concepts of digital electronics and microprocessors to build an       |

|                | electronic instrumentation system that demonstrates some physics concept, or is useful for a research experiment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Reference | <ol> <li>Digital Electronics: Principles and Applications 9th editionRoger Tokheim Wiley,<br/>McGraw-Hill Higher Education, 2022ISBN 9781259872983</li> <li>Digital Electronics: Principles, Devices and Applications Anil K. Maini. Wiley<br/>(2007) ISBN 978-0-470-03214-5</li> <li>Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and<br/>Jeffrey H. Lang. Elsevier, July 2005. ISBN: 9781558607354</li> <li>Digital Integrated ElectronicsH. Taub and D. Schilling, McGraw-Hill ISBN:<br/>0070629218</li> <li>Arduino: A Technical Reference: A Handbook for Technicians, Engineers, and</li> </ol> |
|                | Makers J. M. Hughes O302222Reilly (2016) ISBN: 978-1491921760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Course Name    | General Physics Lab                       |
|----------------|-------------------------------------------|
| Course Code    | PH 232                                    |
| Total Credits  | 3                                         |
| Туре           | L                                         |
| Lecture        | 0                                         |
| Tutorial       | 0                                         |
| Practical      | 3                                         |
| Half Semester  | N                                         |
| Description    | 1. Photoelectric Effect                   |
|                | 2. Frank-Hertz Experiment                 |
|                | 3. Elastic Constant by Cornu's Method     |
|                | 4. Dielectric Constant                    |
|                | 5. Viscosity by Stokes' Method            |
|                | 6. Thermal conductivity by Forbes' Method |
|                | 7. Magnetic Susceptibility Gouy's Method  |
|                | 8. Potential Energy of a Magnet           |
| Text Reference | Lab manual                                |

### Third Year, First Semester

| Course Name   | Environmental Science |
|---------------|-----------------------|
| Course code   | ES 200 & HS 200       |
| Total Credits | 6                     |
| Туре          | Т                     |
| Lecture       | 2                     |
| Tutorial      | 1                     |

| Practical      | 0   |
|----------------|-----|
| Half Semester  | N   |
|                |     |
| Prerequisite   | Nil |
| Description    |     |
|                |     |
|                |     |
|                |     |
|                |     |
| Text Reference |     |
|                |     |

| Course Name   | Introduction to Numerical Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course code   | PH 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Credits | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Туре          | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lecture       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tutorial      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Practical     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Half Semester | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Prerequisite  | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Description   | <ol> <li>Basics: Errors, binary representation of numbers. 2. Solutions of algebraic<br/>equations: bisection method, false-position method, modified false-position<br/>method, Newton-Rapson method both for one and many variables 3. Interpolation<br/>and extrapolation: forward, backward, and divided differences and the<br/>corresponding Newton's interpolation formulas. Lagrange formula for<br/>interpolation. 4. Numerical integration: finite differences based approaches such<br/>as trapezoidal rule, Simpson rule, and Romberg integration. Gaussian quadrature.</li> <li>Solutions of ordinary differential equations: Euler method and improved Euler<br/>method, Runge-Kutta class of methods up to fourth order. Predictor-Corrector<br/>methods 6. Solutions of Partial Differential Equations: Mainly finite difference<br/>approaches, spectral methods employing the basis-set expansion techniques. 7.<br/>Matrix Algebra: Solution of systems of linear equations using Gaussian Seidel and<br/>Gaussian elimination approaches. LU factorization. Iterative approaches to<br/>systems of linear equation. Diagonalization of matrices using Jacobi rotation,<br/>power method, Rayleigh quotient approach, and inverse iteration mehod. Inverse<br/>of a matrix using different methods such as Fadeev-Leverrier method 8. Random<br/>Number generation and Monte Carlo Methods for calculations of integrals.<br/>Metropolis algorithm. Kinetic Monte Carlo Method. 9. Fast Fourier transform<br/>(FFT): Fourier transform of discretely sampled data, FFT for real functions, Sine</li> </ol> |

|                | and Cosine functions. Convolution and deconvolution using FFT, correlation and auto-correlation using FFT                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Reference | <ol> <li>Introduction to numerical analysis, by F.B. Hilderbrand, Dover Publications (1974).</li> <li>Numerical Methods for Scientists and Engineers, by R.W. Hamming, Dover Publications (1973).</li> <li>Numerical Mathematics and Computing, by W. Cheney and D. Kincaid, Thomson (Brooks/Cole) (1999).</li> <li>Numerical Recipes: The art of scientific computing (3rd edition) by W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery Cambridge University Press (2007)</li> <li>Numerical Python by R. Johansson, Springer (2019)</li> </ol> |

| Course Name    | Quantum Mechanics II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course code    | PH 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Total Credits  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Туре           | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lecture        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tutorial       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Practical      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Half Semester  | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Prerequisite   | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Description    | <ul> <li>Addition of angular momentum, Clebsch-Gordan coefficients, Tensor operators, Wigner Eckart theorem.</li> <li>Approximation methods in Quantum Mechanics: (i) Variational principle, (ii) WKB method,</li> <li>(iii) time-independent and (iv) time dependent perturbation theory. Must include applications in atomic physics: Hydrogen atom Fine structure -Relativistic effect, spin orbit</li> <li>coupling, Darwin term, Lamb shift, hyperfine interaction. Stark, Zeeman and Paschen-Back effects. The ground and excited states of helium, direct and exchange terms. Time-dependent electromagnetic interaction, transition probabilities and selection rules.</li> <li>Scattering theory- Born approximation. If time permits partial wave analysis and a brief exposure on Klein-Gordan and Dirac equation.</li> </ul> |
| Text Reference | <ol> <li>Principles of Quantum Mechanics by R. Shankar.</li> <li>Introduction to Quantum Mechanics by Griffiths.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 3. | Modern Quantum Mechanics by J. J. Sakurai                            |
|----|----------------------------------------------------------------------|
| 4. | Quantum Mechanics by C. Cohen-Tannoudji and F. Lalo e for reference  |
|    | material.                                                            |
| 5. | L. D. Landau and E. M. Lifshitz, Pergamon Press 1965                 |
| 6. | W. Greiner, Quantum Mechanics: An introduction                       |
| 7. | Atomic Physics by C.J. Foot, Oxford Master Series in Physics, Oxford |
|    | University Press                                                     |
| 8. | Physics of atoms and molecules, Bransden and Joachain, Pearson 2003  |

| Course Name    | Introduction to Condensed Matter Physics                                                                                                                                                                                                                                                                                                                                |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | PH 436                                                                                                                                                                                                                                                                                                                                                                  |
| Total Credits  | 6                                                                                                                                                                                                                                                                                                                                                                       |
| Туре           | Т                                                                                                                                                                                                                                                                                                                                                                       |
| Lecture        | 2                                                                                                                                                                                                                                                                                                                                                                       |
| Tutorial       | 0                                                                                                                                                                                                                                                                                                                                                                       |
| Practical      | 1                                                                                                                                                                                                                                                                                                                                                                       |
| Prerequisite   | Nil                                                                                                                                                                                                                                                                                                                                                                     |
| Description    | Crystal structures, reciprocal lattice, X-ray and electron diffraction.<br>Lattice vibrations, Einstein and Debye models, phonons. Drude and Sommerfeld<br>models. Bloch theorem, Empty lattice and nearly free electron model, tight-<br>binding model, Density of states and Fermi surfaces. Semi classical model of<br>electron dynamics. Concept of Effective mass. |
| Text Reference | <ol> <li>N. Ashcroft and N.D. Mermin, Solid state physics</li> <li>C. Kittel, Introduction to solid state physics, 7th ed., John Wiley 1997.</li> <li>J. R. Christman, Fundamentals of Solid State Physics. John Wiley 1988</li> <li>Ibach and Luth, Solid State Physics, Springer Verlag 2009</li> </ol>                                                               |

| Course Name   | Physics Lab (Solid State Physics and Nuclear Physics) |
|---------------|-------------------------------------------------------|
| Course Code   | PH 446                                                |
| Total Credits | 3                                                     |
| Туре          | L                                                     |
| Lecture       | 0                                                     |
| Tutorial      | 0                                                     |
| Practical     | 3                                                     |
| Prerequisite  | Nil                                                   |

| Description    | <ul> <li>SSP: <ol> <li>g value using ESR spectrometer,</li> <li>spin-lattice relaxation time using NMR spectrometer,</li> <li>energy gap of a semiconductor using four-probe method,</li> <li>carrier concentration using Hall measurement,</li> <li>wave length of microwaves.</li> </ol> </li> <li>NP: <ol> <li>Absorption coefficient of gamma-rays in Aluminium.</li> <li>Low and high counting statistics using G. M. Counter.</li> <li>Gamma-ray spectrometry using Nal(TI) scintillator.</li> <li>Compton scattering of gamma-ray using 137Cs source.</li> <li>Coincident study of annihilation photons using 22Na source.</li> </ol> </li> </ul> |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Reference | Lab manuals of SSP and NP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### Third Year, Second Semester

| Course Name   | Molecular spectroscopy and optical physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course code   | PH 530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Total Credits | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Туре          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lecture       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tutorial      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Practical     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Prerequisite  | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Description   | <ul> <li>Part-I Molecular Spectroscopy (Half-semester)</li> <li>Born-Oppenheimer approximation, Rotational structure of diatomic molecules<br/>and extension to linear, symmetric/spherical top molecules, vibrational structure<br/>of diatomic molecules and extension to triatomic molecules, Rotational-vibrational<br/>spectrum of diatomic molecules, Electronic structure of diatomic molecules and<br/>extension to simple polyatomic molecules, Selection rules for rotational,<br/>vibrational and electronic transitions, Franck-Condon principle, Raman effect. X-<br/>ray and photoelectron spectroscopy.</li> <li>Part-II Optical Physics (Half-semester)</li> </ul> |
|               | Linear optical response on the basis of Lorentz oscillator model, photonic crystals-<br>an introduction to their band structure, introduction to plasmonics and<br>applications, non-linear optical response of the medium, origin of the optical non-                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                | linearities (second and third order susceptibilities), classical and quantum pictures,<br>a synopsis of nonlinear optical processes, second and third order optical processes<br>and applications, phase matching considerations, stimulated Raman and Brillouin<br>scatterings, intense field effects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text Reference | <ul> <li>Part-I Molecular Physics</li> <li>1. 'Physics of atoms and molecules' by Bransden and Joachain, Pearson 2003</li> <li>2. 'Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular-<br/>and Quantum Physics' by Wolfgang Demtröder, Springer (2010).</li> <li>3. 'Fundamentals of Molecular Spectroscopy' by C.N. Banwell and E.M.<br/>McCash, Tata-McGraw-Hill (1995).</li> <li>4. 'Spectra of Atoms and Molecules' by Peter F. Bernath, Oxford University<br/>Press (2005).</li> <li>Part-II Optical Physics</li> <li>1. M. Born and E. Wolf, Principles of Optics, McMillan,1974.</li> <li>2. John D. Joannopoulos, Steven G. Johnson, Joshua N. Winn, and<br/>Robert D. Meade, Photonic Crystals: Molding the Flow of Light (2ed)<br/>Princeton University Press (2007)</li> <li>3. Stefan Maier, Plasmonics: Fundamental and Applications, Springer (2007)</li> <li>4. B. W. Boyd, Nonlinear ontics, academic press 2003</li> </ul> |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Course Name   | Physics Lab (Optics and Spectroscopy) |
|---------------|---------------------------------------|
| Course code   | PH 447                                |
| Total Credits | 3                                     |
| Туре          | L                                     |
| Lecture       | 0                                     |
| Tutorial      | 0                                     |
| Practical     | 3                                     |
| Prerequisite  | Nil                                   |
| Description   | Optics<br>Spatial Filtering           |
|               | Spatial Coherence                     |

|                | Mach-Zehnder Interferometer   |
|----------------|-------------------------------|
|                | Nonlinear Optics / Z Scan     |
|                | CdS Nanoparticles (Theory)    |
|                | <u>Spectroscopy</u>           |
|                |                               |
|                | Spin Orbit Coupling of Cu     |
|                | Absorption Spectrum of Iodine |
|                | Rotation Spectrum of CN       |
| Text Reference | Lab manuals                   |

### Fourth year has only electives

## Minor in Engineering Physics

| Course Code:     | Classical Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | PH 251                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pre-requisite:   | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Description:     | Review of Newton's laws of motion. Hamilton's principle, variational method<br>and Lagrange's equations with and without constraints. Central force, Kepler's<br>laws. Hamilton's equations, canonical transformation, Poisson brackets. Periodic<br>motion, small oscillations, normal coordinates. Rigid body dynamics, moment of<br>inertia tensor, Euler equations, motion of asymmetric top. Frames of reference,<br>rotating frames, centrifugal and Coriolis forces. |
| Text/References: | 1. H. Goldstein, Classical Mechanics, Addison Wesley 1980                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 2. N. C. Rana and P. S. Joag, Classical Mechanics, Tata McGraw Hill 1991 |  |
|--------------------------------------------------------------------------|--|
| 3. S. N. Biswas, Classical Mechanics 1998                                |  |

| Course Name    | Introduction to Quantum Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | PH 252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Total Credits  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Prerequisite   | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Description    | Basic Ideas and Origin of Quantum Mechanics, Various Experiments, which led to<br>the birth of Quantum Mechanics, Wave Particle Duality Schrodinger Equation<br>and Interpretation of Wave functions, Elementary Ideas of Operators, Eigenvalue<br>problem, Various boundary value Problems, Bound States, Harmonic Oscillator<br>problem (1-dimension), Derivation of Hermite polynomial. Creation and<br>Annihilation Operators, Higher Dimensional Problems, Degeneracy, Hydrogen<br>atom problem in some detail, Many Body Theory, Going beyond Hydrogen atom<br>problem(Helium, Lithium), Many Body Hamiltonian, Born -Oppenheimer<br>Approximation, Tight - binding Approximations, Few simple problems,<br>Introduction to Hartree and Hartree-Fock Theory. Perturbation Theory (Time<br>independent), Derivation of 1 <sup>st</sup> order and 2 <sup>nd</sup> order correction to eigen energy<br>and eigenstate, Various Problems. |
| Text Reference | <ol> <li>Principles of Quantum Mechanics by R. Shankar,</li> <li>Introduction to Quantum Mechanics by Griffiths,</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Course Name    | Thermal and Statistical Physics                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code    | PH 253                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Credits  | 6                                                                                                                                                                                                                                                                                                                                                                                               |
| Prerequisite   | Nil                                                                                                                                                                                                                                                                                                                                                                                             |
| Description    | Review of thermodynamics: notion of equilibrium, equation of state, first and second laws of thermodynamics, thermodynamic potentials and Maxwell's relations. Phase space, ergodicity, Liouville's theorem, microcanonical, canonical and grand canonical ensembles, Boltzmann statistics and its applications to ideal gas. Bose-Einstein and Fermi-Dirac statistics, and their applications. |
| Text Reference | <ol> <li>K. Huang, Statistical Mechanics, 2nd ed., John Wiley, 1987.</li> <li>H.B. Callen, Thermodynamics and an Introduction to Thermostatistics,<br/>2nd edn, John Wiley, 1985</li> <li>F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw Hill,<br/>1965.</li> </ol>                                                                                                           |

# Text Reference

| Course Code:     | Introduction to Condensed Matter Physics                                                                                                                                                                                                                                                                                                                               |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | PH 352                                                                                                                                                                                                                                                                                                                                                                 |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                      |
| Pre-requisite:   | Nil                                                                                                                                                                                                                                                                                                                                                                    |
| Description:     | Crystal structures, reciprocal lattice, X-ray and electron diffraction. Lattice<br>vibrations, Einstein and Debye models, phonons. Drude and Sommerfeld models.<br>Block theorem, Empty lattice and nearly free electron model, tight-binding model,<br>Density of states and Fermi surfaces. Semi classical model of electron dynamics.<br>Concept of Effective mass. |
| Text/References: | <ol> <li>N. Ashcroft and N.D. Mermin, Solid State Physics, Holt Finehart &amp; Winston 1976</li> <li>C. Kittel, Introduction to solid state physics, 7th ed., John Wiley 1997.</li> <li>J.R. Christman, Fundamentals of Solid State Physics. John Wiley 1988</li> </ol>                                                                                                |

| Course Code:     | Light matter Interactions                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | PH 353                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Pre-requisite:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Description:     | Maxwell's equations and propagation of light, Fourier analysis, Lorentz model of optical response, optical response of various natural and artificial materials, metamaterials, photonic crystals, polarization of light, scattering phenomena, lasers, nonlinear light-matter interaction, ultrafast phenomena, strong light-matter interaction, plasmonics, and few applications of light-matter interactions like photovoltaics and optical switching. |
| Text/References: | <ol> <li>Optics by Eugene Hecht</li> <li>Introduction to Nonlinear Optics by Robert Boyd</li> <li>Femtosecond Laser Pulses: Principles and Experiments by Claude Rullière</li> </ol>                                                                                                                                                                                                                                                                      |

# M.Sc.

| First Year, | <b>First Semester</b> |
|-------------|-----------------------|
|-------------|-----------------------|

| Course Code: | PH 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:       | Classical Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Credits:     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Туре         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lecture      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tutorial     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Description: | <ol> <li>A short revision of elementary Newtonian mechanics - Forces, Torques,<br/>Rotational motion, Sliding friction, Rolling friction as a constraint, Oscillations<br/>of single degrees of freedom, Energy conservation, Energy non-conservation<br/>and inelasticity.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 2. Lagrangian formalism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | <ul> <li>(i) Generalised Kinetic energy, Potential energy, Symmetries leading to Lagrangian of a free particle in non-relativistic and relativistic mechanics.</li> <li>(ii) Hamilton's principle, Variational method, and Euler-Lagrange equations.</li> <li>(iii) Symmetries and conservation laws — generalised momenta, energy function, and Gauge freedom of Lagrangian.</li> <li>(iv) Lagrangian systems with constraint — Lagrange multipliers, and generalised forces of constraint and virtual work.</li> <li>(v) Particles to fields — derivation of 1-dimensional wave equation, and electromagnetic Lagrangian to Lorentz force law and Maxwell's equations.</li> </ul> |
|              | 3. Coupled Oscillators and small oscillations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | Lagrangian formulation of linearly coupled systems — normal modes and normal frequencies. Examples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | 4. Hamiltonian formulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | (i)Derivation of the Hamilton's equations of motion. Hamiltonian of certain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                  | systems, specially of a particle in an electromagnetic field.<br>(ii) Phase space flows in second-order autonomous systems. Special case of<br>Classical Hamiltonian systems — comparison to incompressible fluids.<br>Examples of Hamiltonian phase space flows — elliptic and hyperbolic fixed                              |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | (iii) Gauge freedom of the Lagrangian and corresponding changes in the Hamiltonian.                                                                                                                                                                                                                                           |
|                  | 5. Central forces                                                                                                                                                                                                                                                                                                             |
|                  | (i)Differential and integral equations of orbit.<br>(ii)Conditions for bounded orbits or/and closed orbits. Precession of the axis<br>of ellipse.                                                                                                                                                                             |
|                  | 6. Canonical Transformations                                                                                                                                                                                                                                                                                                  |
|                  | (i)Motivation, condition for canonical transformation, and types of generating functions.                                                                                                                                                                                                                                     |
|                  | <ul><li>(ii) Symplectic criterion for Canonical Transformations.</li><li>(iii) Infinitesimal Canonical transformations, Generators.</li></ul>                                                                                                                                                                                 |
|                  | <ul> <li>(iv) Poisson bracket invariance, and Jacobi's identity.</li> <li>(v) Phase space volume conservation, and Liouville's Theorem. Hamilton's Jacobi equation. Discuss the quantum to classical limit.</li> </ul>                                                                                                        |
|                  | 7. Rigid bodies                                                                                                                                                                                                                                                                                                               |
|                  | (i)Frames of reference — accelerating and rotating frames and pseudo-forces.<br>(ii)Rigid body motion with one point fixed. The orthogonal rotation matrix —<br>its components, determinant, and eigenvalues. Euler's theorem. Finite<br>rotation formula. Infinitesimal rotation matrix, and concept of angular<br>velocity. |
|                  | (iii) Velocity of different points of a rigid body. Motion split into that of the Centre of mass, and about the Centre of mass — angular momentum, and kinetic energy formulas. The inertia tensor. Its components related to the symmetries of the rigid body. Parallel axis theorem.                                        |
|                  | <ul> <li>(iv) The body frame, Euler angles and Euler equations.</li> <li>(v) The symmetric top — force and torque free motion, and motion under</li> </ul>                                                                                                                                                                    |
|                  | constant gravity.                                                                                                                                                                                                                                                                                                             |
| Text/References: | 6. H. Goldstein, Classical Mechanics, Addison Wesley 1980                                                                                                                                                                                                                                                                     |
|                  | 7. N. C. Rana and P. S. Joag, Classical Mechanics, Tata McGraw Hill 1991                                                                                                                                                                                                                                                      |
|                  | 9 V L Arnold Mathematical Methods of Classical Mechanics Springer                                                                                                                                                                                                                                                             |
|                  | Verlag 1981                                                                                                                                                                                                                                                                                                                   |
|                  | 10. S. N. Biswas, Classical Mechanics 1998                                                                                                                                                                                                                                                                                    |

| 11. Percival & Richards, Introduction to Dynamics, Cambridge |
|--------------------------------------------------------------|
|                                                              |

| Course Code:     | PH 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Quantum Mechanics I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Credits:         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lecture          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Description:     | <ol> <li>Experimental Motivation, Future of Quantum Mechanics. Axioms of QM.</li> <li>Mathematical Preliminaries: Linear Algebra (esp. trace, partial trace, tensor products), Hilbert Space,<br/>Orthogonal Polynomials, Rotations &amp;Unitaries.</li> <li>Quantum States &amp; Density Matrices.</li> <li>Schr odinger's equation, Schr odinger's equation for Unitaries, Schr odinger, Heisenberg &amp; Interaction<br/>Pictures.</li> <li>Simple Problems in One Dimension, Preview of Selection Rules.</li> <li>Harmonic Oscillators, Uncertainty Principle, Ladder Operators.</li> <li>Spin-1/2: Qubit states, Bloch Sphere Representation, Transitions, Rabi<br/>Oscillations</li> <li>Coupled Quantum Systems</li> <li>Central Force Problems, Rigid Rotor</li> <li>Hydrogen Atom, Angular Momentum Operators, Addition of Angular<br/>Momentum.</li> </ol> |
| Text/References: | <ol> <li>Principles of Quantum Mechanics, R. Shankar,</li> <li>Introduction to Quantum Mechanics, D. J. Griffiths,</li> <li>Modern Quantum Mechanics, J.J. Sakurai</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | <ol> <li>Quantum Mechanics, C. Cohen-Tannoudji and F. Lalo e for reference<br/>material.</li> <li>L. D. Landau and E. M. Lifshitz, Pergamon Press 1965</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Course Code: | PH 405                                                                            |
|--------------|-----------------------------------------------------------------------------------|
| Title:       | Electronics                                                                       |
| Credits:     | 6                                                                                 |
| Туре         | Т                                                                                 |
| Lecture      | 2                                                                                 |
| Tutorial     | 1                                                                                 |
| Description: | Semiconductor basics, diodes, transistors, transistor models, biasing, amplifiers |
|              | (CE, CC, Swamped), Darlington pairs, difference amplifiers, operational           |
|              | amplifiers, feedback, instrumentation amplifier, filters, JFETs and MOSFETs,      |

|                  | Digital electronics : Logic gates, Boolean algebra, Karnaugh maps, flip flops, shift registers, adders, counters, ADC and DAC.                                                                                                                                             |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text/References: | <ol> <li>J. Millman and C. Halkias, Integrated Electronics: Analog and Digital<br/>Systems, McGraw Hill 1972</li> <li>A. P. Malvino, Electronic Principles, Tata McGraw Hill 1979</li> <li>J. Millman and H. Taub, Pulse and Digital Circuits, McGraw Hill 1956</li> </ol> |

| Course Code:     | PH 407                                                                                |
|------------------|---------------------------------------------------------------------------------------|
| Title:           | Mathematical Physics I                                                                |
| Credits:         | 8                                                                                     |
| Туре             | Т                                                                                     |
| Lecture          | 3                                                                                     |
| Tutorial         | 1                                                                                     |
| Description:     | 1. Linear Vector space                                                                |
|                  | - Scalar product, Metric spaces, Linear operator, Matrix algebra, Eigenvalues and     |
|                  | Eigenvector, , Infinite dimensional vector spaces, Introduction to tensors.           |
|                  | 2. Theory of analytical functions : Complex analysis                                  |
|                  | - Complex numbers, Cauchy-Riemann condition, Analytic function, Taylor and            |
|                  | Laurent series, Classification of singularities, Series, Calculus of residue, Various |
|                  | contour integration, Conformal mapping, Riemann surface, Branch cut integrals,        |
|                  | Analytic continuation, Integral approximation.                                        |
| Text/References: | 1. M. R. Spiegel, Vector Analysis, Schaum's Outline Series, Tata McGraw Hill<br>1979  |
|                  | 2. V. Balakrishnan, Mathematical Physics, Ane Books 2017                              |
|                  | 3. J. W. Brown and R. V. Churchill, Complex Variables and Applications,               |
|                  | McGraw Hill International 1996                                                        |
|                  | 4. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists,                 |
|                  | Academic Press 1995                                                                   |
|                  | 5. H. A. Hinchey, Introduction to Applicable Mathematics, Part 1, Wiley               |
|                  | Eastern, 1980                                                                         |
|                  | 6. Dennery & Krzywicki, Mathematics for Physicists, Dover,                            |
|                  | 7. Dender & Orszag, Advanced Math. Methods for scientists & Engineers                 |

| Course Code: PH 434 |
|---------------------|
|---------------------|

| Title:           | Programming Lab                                                                                               |
|------------------|---------------------------------------------------------------------------------------------------------------|
| Credits:         | 5                                                                                                             |
| Туре             | Т                                                                                                             |
| Lecture          | 1                                                                                                             |
| Tutorial         | 1                                                                                                             |
| Practical        | 3                                                                                                             |
| Description:     | Exposure to DOS and Unix environment. Elementary numerical programming using either FORTRAN-77 or C Language. |
| Text/References: | B. Davis and T.R. Hoffmann, Fortran-77-A Structured Disciplined style, McGraw Hill, Singapore, 1988.          |

| Course Code:     | Electronics Laboratory                                   |
|------------------|----------------------------------------------------------|
| Title:           | PH 443                                                   |
| Credits:         | 3                                                        |
| Туре             | Т                                                        |
| Lecture          | 0                                                        |
| Tutorial         | 0                                                        |
| Practical        | 3                                                        |
| Description:     | Laboratory techniques-I                                  |
|                  | Laboratory techniques-II                                 |
|                  | I-V characteristics of electronic components             |
|                  | Single stage CE amplifier with feedback                  |
|                  | Introduction to OpampsComparator and Buffer              |
|                  | Inverting and Non-inverting amplifier using Opamp        |
|                  | Passive and active filters                               |
|                  | Positive Feedback in Opamp circuits Schmitt Trigger      |
|                  | Introduction to Digital ElectronicsComparator and Buffer |
|                  | Sequential circuits using registers                      |
| Text/References: | Lab manual                                               |

### First year, Second Semester

| Course Code: | PH 408                  |
|--------------|-------------------------|
| Title:       | Mathematical Physics II |
| Credits:     | 8                       |
| Туре         | Т                       |
| Lecture      | 2                       |
| Tutorial     | 1                       |
| Practical    | 0                       |

| Description:     | Partial differential equations and the method of separation of variables. Ordinary |
|------------------|------------------------------------------------------------------------------------|
| •                | differential equations, second order homogeneous and inhomogeneous                 |
|                  | equations. Wronskian, general solutions, particular integral using the method of   |
|                  | variation of parameters. Sturm separation and comparison theorems. Adjoint of      |
|                  | a differential equation. Ordinary and singular points. Series solution. Gauss      |
|                  | hypergeometric and confluent hypergeometric equations. Sturm Liouville             |
|                  | nypergeometric and comment hypigeometric equations. Starm Elouvine                 |
|                  | problem. Legendre, Hermite and the associated polynomials, their differential      |
|                  | equations, generating functions. Bessel functions, spherical Bessel equations.     |
|                  | Fourier series, Fourier and Laplace transforms with applications. Bromwich         |
|                  | integral approach to inverse Laplace transform. Green's function approach to       |
|                  | inhomogeneous differential equations.                                              |
| Text/References: | 1. G.F. Simmons, Differential Equations with Applications and Historical notes,    |
|                  | 2nd edn, Mc Graw Hill, 1991.                                                       |
|                  | 2. H. A. Hinchey, Introduction to Applicable Mathematics Part I, Wiley Eastern,    |
|                  | 1980.                                                                              |
|                  | 3. G.B. Arfken, H.J.Weber, Mathematical Methods for Physicists, 4th ed.,           |
|                  | Academic Press Prism Books, 1995.                                                  |
|                  | 4 P. Morse and H. Feshbach. Methods of Theoretical Physics. Vol 1. McGraw Hill     |
|                  | 1953                                                                               |
|                  | 5 V Balakrishnan Mathematical Dhysics And Books 2017                               |
|                  | J. V. Dalaki isililali, ividulettiducal Filysics, Alle DUUKS 2017                  |

| Course Code: | PH 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:       | Statistical Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Credits:     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Туре         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lecture      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tutorial     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Practical    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Description: | 1. Revision of Thermodynamics:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | Zeroth law, First law, Second law, Carnot cycle, Claussius theorem, reversible<br>work and heat transfer. Entropy. Extensivity — Euler and Gibbs-Duhem relations.<br>Ideal gas. Response functions. Stability conditions, second law, and positivity of<br>response functions. Thermodynamic potentials. Maxwell's relations.                                                                                                                                                                                                                                                                                                      |
|              | <ul> <li>Liementary aspects of probability theory:</li> <li>Empirical versus theoretical probabilities, equal a priori probabilities. Probability distributions functions, and cumulative distribution functions. Characteristic function and moments. Cumulant generating function and cumulants.</li> <li>Transformation of variables and corresponding distributions.</li> <li>Central limit theorem statement and explaining its significance. Problem set should clarify the procedure of attaining the central limit result, starting from various initial distributions, using asymptotic analysis of integrals.</li> </ul> |

### 3. Statistical Ensembles:

| Microscopic dynamics and Liouville's theorem. Different hypotheses of<br>Boltzmann leading up to the formula of Entropy in terms of number of<br>configurations in an isolated system. Microcanonical ensemble. Example of ideal<br>gas. Entropy of mixing. Canonical Ensemble, and partition sum. Asymptotic<br>analysis and relation to thermodynamic free energy. Fluctuation of energy and<br>fluctuation-response relationship. Ideal gas in canonical ensemble.<br>Gibbs ensemble for fluids. Volume fluctuations. Ideal gas. Gibbs ensemble for a<br>magnetic system. Non-interacting spins. Grand canonical ensemble. Number<br>fluctuations. Ideal gas. Connection of ensembles through inverse transforms.<br>Problem set may clarify ideal gases in various situations including constant<br>gravity, freely jointed polymer chains, magnetic systems, classical oscillators, and<br>hard rods in 1-dimension. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Quantum Statistical systems, and quantum gases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Density matrix and its time evolution. Density matrix in energy basis. Density matrix for a single oscillator, a single spin, and a single particle in a box in position basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Exchange symmetry in many particle system. Fermions and Bosons. Off-diagonal density matrix in position basis, Canonical partition function and Pressure as a series. Grand canonical ensemble. Bose and Fermi distributions. Fermions — pressure, chemical potential, occupancy of levels, energy and specific heat. Bosons — Bose-Einstein condensation. Chemical potential, pressure, energy, specific heat. Vibrations in solids, and blackbody radiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5. [If time permits] Fluids of interacting particles:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Cluster expansion, Virial coefficients, and Pressure as a series in density.<br>Derivation of Vander Waals equation of state for real gases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                  | berivation of valuer waais equation of state for real gases.                                                                                                                                                            |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text/References: | 1. Mehran Kardar, Statistical Physics of Particles                                                                                                                                                                      |
|                  | 2. K. Huang, Statistical Mechanics, John Wiley 1987                                                                                                                                                                     |
|                  | 3. R. K. Pathria, Statistical Mechanics, Butterworth Heinemann 1996                                                                                                                                                     |
|                  | 4. J. Bhattacharjee, Statistical mechanics, Allied Publishers 1996                                                                                                                                                      |
|                  | <ol> <li>K. Huang, Statistical Mechanics, John Wiley 1987</li> <li>R. K. Pathria, Statistical Mechanics, Butterworth Heinemann 1996</li> <li>J. Bhattacharjee, Statistical mechanics, Allied Publishers 1996</li> </ol> |

| Course Code: | PH 418                                   |
|--------------|------------------------------------------|
| Title:       | Introduction to Condensed Matter Physics |
| Credits:     | 6                                        |

| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                      |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                      |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                      |
| Description:     | Crystal structures, reciprocal lattice, X-ray and electron diffraction. Lattice<br>vibrations, Einstein and Debye models, phonons. Drude and Sommerfeld models.<br>Block theorem, Empty lattice and nearly free electron model, tight-binding<br>model, Density of states and Fermi surfaces. Semi classical model of electron<br>dynamics. Concept of Effective mass. |
| Text/References: | <ol> <li>N. Ashcroft and N.D. Mermin, Solid state physics</li> <li>C. Kittel, Introduction to solid state physics, 7th ed., John Wiley 1997.</li> <li>J.R. Christman, Fundamentals of Solid State Physics. John Wiley 1988</li> <li>Ibach and Luth, Solid State Physics, Springer Verlag 2009</li> </ol>                                                               |

| Course Code:     | PH 422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Quantum Mechanics II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Description:     | Recapitulation of angular momentum, tensor operators and Wigner-Eckart<br>theorem. Variational principle method and WKB approximation methods and<br>their applications. Formalism of time independent perturbation theory - both<br>non-degenerate and degenerate cases. Techniques and application of time<br>dependent perturbation theory. Scattering theory concepts with particular<br>discussion on Born approximation, partial wave analysis. Brief<br>exposure to relativistic quantum mechanics and solution of Dirac equation. |
| Text/References: | <ol> <li>Principles of Quantum Mechanics, R. Shankar</li> <li>Introduction to Quantum Mechanics, D. J. Griffiths,</li> <li>Modern Quantum Mechanics, J.J.Sakurai</li> <li>Quantum Mechanics, C. Cohen-Tannoudji</li> <li>Quantum Mechanics with Basic Field Theory, Bipin R Desai</li> </ol>                                                                                                                                                                                                                                              |

| Course Code: | PH 424                   |
|--------------|--------------------------|
| Title:       | Electromagnetic Theory I |
| Credits:     | 6                        |
| Туре         | Т                        |

| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Description:     | 1. Electrostatics Introduction:                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | Coulomb's law, Scalar potential, Electrostatic potential energy,<br>Total energy, electric stress tensor Multipole expansion, Conducting matter,<br>Dielectric Matter<br>2. Boundary Value Problems Solution of Laplace's equation:<br>Potential theory, Uniqueness, Separation of Variables in different<br>coordinate Systems Solution of Poisson's equation using Green's function.<br>Method of Images<br>3. Magnetostatics Introduction: |
|                  | Steady currents, Biot – Savart law, Ampere law, Magnetic vector potential,<br>Magnetic multipoles Magnetic Force & Energy Magnetic matter                                                                                                                                                                                                                                                                                                     |
|                  | <ol> <li>Electrodynamics Dynamic and Quasi – static fields General EMFields Waves<br/>in vacuum and dispersive media</li> </ol>                                                                                                                                                                                                                                                                                                               |
|                  | 5. Special Theory of Relativity Introduction:                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  | Galilean relativity, Einstein's relativity Lorentz transformation Four – vectors,<br>Relativistic Kinematics Electromagnetic quantities and Covariant<br>Electrodynamics.                                                                                                                                                                                                                                                                     |
| Text/References: | <ul> <li>(1) Modern Electrodynamics, A. Zangwill</li> <li>(2) Classical Electrodynamics, J. D. Jackson</li> <li>(3) Introduction to Electrodynamics, D. J. Griffiths</li> <li>(4) Classical Electrodynamics, J. Schwinger</li> </ul>                                                                                                                                                                                                          |

| Course Code: | General Physics Lab       |
|--------------|---------------------------|
| Title:       | PH 441                    |
| Credits:     | 3                         |
| Туре         | L                         |
| Lecture      | 0                         |
| Tutorial     | 0                         |
| Practical    | 3                         |
| Description: | 1. e/m Ratio              |
|              | 2. Photoelectric Effect   |
|              | 3. Frank-Hertz Experiment |

|                  | 4. Elastic Constant by Cornu's Method          |
|------------------|------------------------------------------------|
|                  | 5. Dielectric Constant                         |
|                  | 6. Linear Expansion of Brass – Fizeau's Method |
|                  | 7. Thermal conductivity by Forbes' Method      |
|                  | 8. Magnetic Susceptibility Gouy's Method       |
|                  | 9. Potential Energy of a Magnet                |
|                  |                                                |
| Text/References: | Lab manual                                     |

#### Second Year, First Semester

| Course Code:     | PH 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Introduction to Nuclear & Particle Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Description:     | Basic properties of nuclei and interactions, Nuclear binding energy, Nuclear<br>moments, Nuclear models- independent particle model, shell model, Deuteron<br>problem, Central and tensor forces, Radioactive decay-theory of alpha decay,<br>Fermi theory of beta decay, gamma decay, Nuclear reactions- direct and<br>compound reactions, Elementary particles- classification, symmetries and<br>conserved quantum numbers, quark model                                                                                                                                                                                             |
| Text/References: | <ol> <li>S S M Wong, Introductory Nuclear Physics, 2nd Edition, Wiley-VCH Verlag<br/>GmbH &amp; Co.</li> <li>B L Cohen, Concepts Of Nuclear Physics, Mc Graw Hill</li> <li>H A Enge, Introduction to Nuclear Physics Addison-Wesley</li> <li>J S Lilley, Nuclear Physics: Principles and Applications, John Wiley and Sons</li> <li>K Hyde, Basic ideas and concepts in nuclear physics, CRC Press</li> <li>W E Burcham, Nuclear and Particle Physics, Addison Wesley</li> <li>G Kane, Modern Elementary Particle Physics, Westview Press</li> <li>D J Griffiths, Introduction to Elementary Particles, John Wiley and Sons</li> </ol> |

| Course Code: | PH 515                                                                        |
|--------------|-------------------------------------------------------------------------------|
| Title:       | Introduction to Atomic and Molecular Physics                                  |
| Credits:     | 6                                                                             |
| Туре         | Т                                                                             |
| Lecture      | 2                                                                             |
| Tutorial     | 1                                                                             |
| Practical    | 0                                                                             |
| Description: | Review of one and two-electron atoms: Relativistic effects (spin orbit, mass- |

|                  | velocity and Darwin terms) in hydrogen and hydrogenic atoms, Lamb shift,           |
|------------------|------------------------------------------------------------------------------------|
|                  | ground and excited states of helium, shell structure of alkalis, quantum defect,   |
|                  | Rydberg levels. Basics of spectroscopy: Absorption and emission of photons,        |
|                  | Transition probabilities and cross-sections, Lifetime, Line broadening             |
|                  | mechanisms, Homogenous and in-homogenous broadening. Many electron                 |
|                  | atoms: Central field approximation, coupled and uncoupled representations, L-S     |
|                  | and j-j coupling schemes, Selection rules, Zeeman and Paschen-Back effects,        |
|                  | Hyperfine interaction (magnetic dipole and electric quadrupole interactions),      |
|                  | Isotope shift (mass shift and volume shift). <i>Molecular structure</i> : Born-    |
|                  | Oppenheimer approximation, Rotational structure of diatomic molecules and          |
|                  | extension to linear, symmetric/spherical top molecules, vibrational structure of   |
|                  | diatomic molecules and extension to triatomic molecules, Rotational-vibrational    |
|                  | spectrum of diatomic molecules, Electronic structure of diatomic molecules and     |
|                  | extension to simple polyatomic molecules, Selection rules for rotational,          |
|                  | vibrational and electronic transitions, Franck-Condon principle, Raman effect.     |
|                  | Experimental techniques in atomic and molecular physics: Absorption,               |
|                  | Fluorescence, Raman, Two-photon, Doppler-limited and Doppler-free                  |
|                  | spectroscopy, X-ray and photoelectron spectroscopy, Cooling and trapping of        |
|                  | atoms/ions.                                                                        |
| Text/References: | 1. Atomic Physics by C.J. Foot, Oxford Master Series in Physics, Oxford University |
|                  | Press (2005).                                                                      |
|                  | 2. Atoms, Molecules and Photons: An Introduction to Atomic-, Molecular-            |
|                  | and Quantum Physics by Wolfgang Demtröder, Springer (2010).                        |
|                  | 3. Fundamentals of Molecular Spectroscopy by C.N. Banwell and E.M. McCash,         |
|                  | Tata-McGraw-Hill (1995).                                                           |
|                  | 4. Spectra of Atoms and Molecules by Peter F. Bernath, Oxford University Press     |
|                  | (2005).                                                                            |
|                  | 5. Physics of atoms and molecules, Bransden and Joachain, Pearson 2003             |

| Course Code: | PH 527                                                    |
|--------------|-----------------------------------------------------------|
| Title:       | Solid State Physics and Nuclear Physics Lab               |
| Credits:     | 6                                                         |
| Туре         | L                                                         |
| Lecture      | 0                                                         |
| Tutorial     | 0                                                         |
| Practical    | 6                                                         |
| Description: | SSP:                                                      |
|              | 1. g value using ESR spectrometer,                        |
|              | 2. spin-lattice relaxation using NMR spectrometer,        |
|              | 3. Energy gap of a semiconductor using four-probe method, |
|              | 4. Carrier concentration using Hall measurement,          |
|              | 5. wave length of microwaves.                             |

|                  | <ul> <li>NP:</li> <li>1)Absorption coefficient of gamma-rays in Aluminium.</li> <li>2) Low and high counting statistics using G. M. Counter.</li> <li>3) Gamma-ray spectrometry using NaI(TI) scintillator.</li> <li>4) Compton scattering of gamma-ray using 137Cs source.</li> <li>5) Coincident study of annihilation photons using 22Na source.</li> <li>6) Rutherford scattering of alpha particles in gold.</li> </ul> |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text/References: | Lab manuals                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Second Year, Second Semester

| Course Code:     | PH 510                                                                                                                                                                                                                                                                                                                                                                   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Electromagnetic Theory II                                                                                                                                                                                                                                                                                                                                                |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                        |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                        |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                        |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                        |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                        |
| Description:     | Potentials and fields of moving charges (Lienard-Wiechert), radiation basics,<br>radiative transfer, Planck's law, dipole radiation, Thomson scattering, Cyclotron,<br>Synchrotron, Bremmstrahlung, Cherenkov, Compton and inverse Compton,<br>Einstein coefficients, Transmission lines, Waveguides, Antennas and Arrays,<br>detection of radiation - detector physics. |
| Text/References: | <ol> <li>Electrodynamics, D. J. Griffiths</li> <li>E. K. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating<br/>Systems, Prentice Hall 1971</li> <li>S. S. Puri, Classical Electrodynamics, Tata McGraw Hill 1997</li> <li>J. D. Jackson, Classical Electrodynamics, John Wiley and Sons 1998</li> </ol>                                                      |
| Course Code:     | PH 530                                                                                                                                                                                                                                                                                                                                                                   |
| Title:           | Light Matter Interaction                                                                                                                                                                                                                                                                                                                                                 |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                        |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                        |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                        |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                        |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                        |
| Description:     | Interaction of two level atom with incoherent light, Einstein coefficients, multi quantum transitions, interaction of two level atom with resonant coherent light, analogy between two level and spin ½ systems, optical Bloch equations of two level systems-polarization, susceptibility and spontaneous emission, dressed                                             |

|                  | states, Rabbi flopping, free precession and photon echoes.                      |
|------------------|---------------------------------------------------------------------------------|
|                  |                                                                                 |
|                  | Interaction of light with three level system-irradiation of single and two      |
|                  | transitions, coherence transfer, three level echoes, quantum beats, Raman       |
|                  | excitation, coherent population trapping, electromagnetically induced           |
|                  | transparency, over damped systems adiabatic limit, optical pumping, light shift |
|                  | and damping, ground state dynamics.                                             |
| Text/References: | 1. Light-Matter Interaction, Vol.1: Fundamentals, by J. Weiner and P.T. Ho,     |
|                  | Willy (2008). This books contains all topics of interest except                 |
|                  | strong/intense field interactions.                                              |
|                  | 2. Elements of quantum optics, P. Meyster and M. Sargent, Springer Verlag       |
|                  | 2001                                                                            |
|                  | 3. Quantum Optics, M. O. Scully and S. Zubairy, Cambridge university Press      |
|                  | 1997                                                                            |
|                  | 4. Atom-photon interaction: basic principles and applications, Claude Cohen     |
|                  | Tonnoudji, J. D. Roc and G. Grynberg, John Wiley and Sons 1998                  |
|                  | 5. Lectures on Light: Nonlinear and Quantum Optics, by S.C. Rand, Oxford        |
|                  | Univ. Press (2010). It treats topics of interest, one needs to subtract the     |
|                  | quantum optics part (e.g. Coherent states etc).                                 |
|                  | 6. Atomic Physics, by C.J. Foot, Oxford University Press (2005) Chapters        |
|                  | 7.8.9 provide the basic issues in light-matter interaction                      |
|                  | 7 Atoms Solids and Plasmas in super intense laser fields. Ed. D. Batani C.L.    |
|                  | Ioachain S. Martelluci and A.N. Chester, Kluwer/Plenum (2001)                   |
|                  | Multiphoton ionization of stoms Ed. S.L. Chin and D. Labraraulas                |
|                  | 8. Wulliphoton ionization of atoms, Ed. S.L. Chin and P. Labropoulos,           |
|                  | Elsevier (1984).                                                                |

| Course Code: | PH 512                                                                |
|--------------|-----------------------------------------------------------------------|
| Title:       | Optics and Spectroscopy Lab                                           |
| Credits:     | 6                                                                     |
| Туре         | L                                                                     |
| Lecture      | 0                                                                     |
| Tutorial     | 0                                                                     |
| Practical    | 6                                                                     |
| Description: | Optics                                                                |
|              | Spatial Filtering<br>Spatial Coherence<br>Mach-Zehnder Interferometer |

|                  | Nonlinear Optics / Z Scan     |
|------------------|-------------------------------|
|                  | CdsNanoparticals (Theory)     |
|                  | Spectroscopy                  |
|                  |                               |
|                  | Spin Orbit Coupling of Cu     |
|                  | Absorption Spectrum of Iodine |
|                  | Rotation Spectrum of CN       |
| Text/References: | Lab manuals                   |

### Elective Courses (Odd semester) open to all

| Course Name   | Methods in Analytical Techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course code   | PH 517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Credits | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Туре          | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lecture       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tutorial      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Practical     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Half Semester | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Description   | Structure and Microstructure analysis by X-ray and electron diffraction, transmission and scanning electron microscopy techniques. Study of molecular structure by resonance techniques like Nuclear magnetic resonance (NMR), Fourier transform NMR (FTNMR) and Electron spin resonance (ESR). Study of molecular structure by Infrared (IR), Fourier transform IR (FTIR) and Raman spectroscopies. Study of electronic structure by Photoelectron Spectroscopy and X-ray absorption techniques. Composition analysis by Energy dispersive X-ray (EDX), Auger Electron Spectroscopy (AES) and Secondary ion mass spectrometry (SIMS). Study of surface morphology and structure by Scanning tunneling and Atomic Force microscopies (STM, AFM). Study of magnetic thin films by Ferromagnetic resonance, vibrating sample and torque magnetometry and Magnetic force microscopy. |

| Text Reference | 1. R.S. Drago, Physical methods, 2nd ed., Saunders College Publishing, 1992.      |
|----------------|-----------------------------------------------------------------------------------|
|                | 2. B.G.Yacobi, D.B.Holt and L.L.Kazmerski, Microanalysis of Solids, Plenum Press, |
|                | 1994.                                                                             |
|                |                                                                                   |

| Course Code:     | PH 523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Quantum Mechanics III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Description:     | Relativistic wave equation : (a) Klein-Gordon equation, solution for K-G equation (free spin zero particles), Lagrangian and energy-momentum tensor of K-G field, symmetries and Noether's theorem, conserved charge and current, Interaction of a relativistic spin-zero particle with electromagnetic field, (b) Rotation group and angular momentum, Dirac equation for spin-1/2 particle, covariant form, continuity relation, hole theory, free particle spinors, antiparticles, Lagrangian density and energy-momentum tensor, normalization of spinors and completeness relation, zero mass fermions, (c) Field theory and second quantization: quantization of free scalar field, ground state of the Hamiltonian, normal ordering, Fock space, complex scalar field, propagator of real and complex scalar field, microscopic causality, Quantization of free Dirac field, Fourier decomposition, propagator of Dirac field. |
| Text/References: | 1. Relativistic Quantum Mechanics, Bjorken and Drell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | <ol> <li>Quarks and Leptons : an Introductory course in modern particle physics,<br/>Halzen and Martin</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | 3. A first book on quantum field theory, Lahiri and Pal;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | 4. An introduction to quantum field theory, Peskin and Schroeder.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Course Code: | PH 534                                                                         |
|--------------|--------------------------------------------------------------------------------|
| Title:       | Quantum information and computing                                              |
| Credits:     | 6                                                                              |
| Туре         | Т                                                                              |
| Lecture      | 2                                                                              |
| Tutorial     | 1                                                                              |
| Practical    | 0                                                                              |
| Description: | Open Systems Theory (N&C, Breuer) Basics : States and measurements in          |
|              | quantum mechanics: Basic quantum mechanics, unitary operators, qubits and      |
|              | single qubit gates, density matrices, evolution equation for density matrices, |
|              | example: two-level systems, composite systems and tensor products.             |

|                  | CPTP Maps: CPTP maps, Kraus representation, Stinesping dilation, Choi<br>&Jamiałkowski isomorphism, Information & Computation (ref: N&C, Wilde, Wolf,<br>Hayashi) Entropy,                                             |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Entanglement & Measures: Entropy, matrix inequalities and monotones,<br>distance measures and their meaning, relative entropy, mutual information.<br>Schmidt rank, concurrence, distance measures, entropic measures. |
|                  | Important Techniques & Algorithms: Dense coding, entanglement distillation and purification, teleportation, Deutsch-Josza, Bernstein-Vazirani, Simon, Grover, quantum Fourier transform, Shor, DQC-1                   |
|                  | Paradigms & Implementations of Computing (N&C): circuit-based QC, adiabatic                                                                                                                                            |
|                  | QC, measurement-based QC, topological QC                                                                                                                                                                               |
|                  | Experiments: ion traps, linear optics, superconducting qubits                                                                                                                                                          |
|                  | Geometry & Metrology (Extra / Wishlist) (N&C,Bengtsson) Geometry &                                                                                                                                                     |
|                  | Correlation Measures :.                                                                                                                                                                                                |
| Text/References: | [1] Nielsen, Michael A., and Isaac L. Chuang. "Quantum Computation and                                                                                                                                                 |
|                  | Quantum Information (Cambridge University Press, Cambridge,                                                                                                                                                            |
|                  | 2000)."302240URL https://doi. org/10.1017/CBO9780511976667.                                                                                                                                                            |
|                  | [2] Nakahara, Mikio.302240Quantum computing: from linear algebra to physical                                                                                                                                           |
|                  | realizations. CRC press, 2008.                                                                                                                                                                                         |
|                  | [3] Preskill, John. "Lecture notes for physics 229: Quantum information and                                                                                                                                            |
|                  | computation."302240California Institute of Technology30224016, no. 1 (1998):                                                                                                                                           |
|                  | 1-8.                                                                                                                                                                                                                   |

| Course Code: | PH 543                                                                                                                    |
|--------------|---------------------------------------------------------------------------------------------------------------------------|
| Title:       | Advanced Statistical Mechanics                                                                                            |
| Credits:     | 6                                                                                                                         |
| Туре         | Т                                                                                                                         |
| Lecture      | 2                                                                                                                         |
| Tutorial     | 1                                                                                                                         |
| Practical    | 0                                                                                                                         |
| Description: | 1. Introduction and Overview<br>2. Probability Theory, A-priori probabilities, Distributions, generating functions        |
|              | (moment and cumulant series expansions) Inter-conversion of probability<br>distributions, Central Limit Theorem           |
|              | 3. Folklore of Phase transitions: exponents and universality Yang-Lee theorem                                             |
|              | 4. Transfer matrices, Ising and Dimer models Duality and exact Tc of 2-d Ising model. Overview of exactly solvable models |
|              | 5. Master Equation, Two processes in details — Random Walk, and Birth Process                                             |

|                  | [method of Lagrange characteristics]. More examples. Waiting times, and       |
|------------------|-------------------------------------------------------------------------------|
|                  | continuous time random walk. Theory of W-matrices, Equilibrium versus Non-    |
|                  | equilibrium steady states — detailed balance and other balances. Ergodicity,  |
|                  | Kinetic Monte-Carlo, and simulation of kinetics of models. Metropolis Monte   |
|                  | Carlo — simulations of spin systems, and other equilibrium models.            |
|                  | 6. Fokker-Planck and Langevin equations Solutions by various methods,         |
|                  | connection between the two approaches. Absorbing boundaries and first         |
|                  | passage problem, reflecting boundaries, Kramer's problem, Auto-correlations   |
|                  | using Langevin equation — [Wiener, Ornstein-Uhlenbeck, Rouse Polymer (sub-    |
|                  | diffusion), Polymer in shear flow (super-diffusion)]                          |
|                  | 7. Approximate approaches to critical phenomena Mean field theory for         |
|                  | magnets: calculation of Exponents Overview of Van der Waal's theory Ginzburg- |
|                  | Landau theory and fluctuations, Gaussian approximation, Calculation of        |
|                  | Correlation function, and specific heat.                                      |
|                  | 8. Scaling hypothesis, Renormalisation group (RG) Preliminary examples        |
|                  | 9. Vector order parameters — equilibrium versus non-equilibrium XY model,     |
|                  | Vicsek model                                                                  |
| Text/References: | 1. Statistical Physics of Particles (volume I), M. Kardar                     |
|                  | 2. Statistical Physics of Fields (volume II), M. Kardar                       |
|                  | 3. Handbook of Stochastic Methods, C.W. Gardiner                              |
|                  | 4. Stochastic Processes in Physics and Chemistry, N.G. Van Kampen             |
|                  | 5. Fokker-Plank Equation, H. Risken                                           |
|                  | 6. Equilibrium Statistical Physics, M. Plischke and B. Bergersen              |
|                  | 7. Principles of Condensed matter physics, P.M. Chaikin and T.C. Lubensky     |
|                  | 8. Statistical Mechanics. K. Huang                                            |
|                  | 9. Scaling and renormalisation in statistical physics. John Cardy             |
|                  | 10 Exactly solved models in Statistical Physics R   Baxter                    |
|                  |                                                                               |

| Course Code: | PH 549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:       | Physics of Biological Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Credits:     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Туре         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lecture      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tutorial     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Practical    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description: | Numbers and scales in Biology, temporal scales, kinetic processes, model systems. Diffusion in biological systems, Brownian motion, Reynold's number, intra and intercellular transport. Pattern formation in biology, Turing model, Reaction diffusion systems, mechano-chemical coupling, patterns in development. Cell, cytoskeleton and motors, invitro and invivo measurements, models for filaments and motors, example systems, cell division and active matter. Chromatin structure and function, DNA and genes, nucleosomes and |

|                  | epigenetic regulation, higher order structures. Gene expression, Role of noise, transcription and translation. Optional: • Viral infections, lysis, lysogeny, horizontal gene transfer, immune responses. Protein folding and mis-folding, aggregation and amyloids. |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text/References: | 1. R. Phillips, J. Kondev, J. Theriot & H. Garcia, Physical Biology of the Cell,                                                                                                                                                                                     |
|                  | Garland Science                                                                                                                                                                                                                                                      |
|                  | 2. K. Roberts, D. Bray, J. Lewis, M. Raff, A. Johnson, B. Alberts, Molecular                                                                                                                                                                                         |
|                  | Biology of theCell, Garland Science,                                                                                                                                                                                                                                 |
|                  | 3. P. Nelson, Biological Physics,                                                                                                                                                                                                                                    |
|                  | 4. W.H. Freeman, J. Howard, Mechanics of Motor Proteins and the                                                                                                                                                                                                      |
|                  | Cytoskeleton, Sinauer Associates,                                                                                                                                                                                                                                    |
|                  | 5. D. Bray, Cell Movements: From Molecules to Motility, Garland Science,                                                                                                                                                                                             |
|                  | 6. D. Boal, Mechanics of the Cell, Cambridge University Press,                                                                                                                                                                                                       |
|                  | 7. H.C. Berg, Random Walks in Biology, Princeton University Press, 1983                                                                                                                                                                                              |
|                  |                                                                                                                                                                                                                                                                      |

| Course Code:     | PH 557                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Theoretical Condensed Matter Physics                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Description:     | Elementary theory of groups and their representation, application solid state<br>physics. Electronic state in solids. Hartree and Hartree-Fock approximation. Free<br>electron, exchange, pseudopotential theory. Cohesive energy of simple metals.<br>Energy bands and their symmetries. Magnetism: Heisenberg exchange and<br>magnetic ordering, magnetic resonance and relaxation. Superconductivity:<br>Microscopic theory, Josephson effect, flux quantization. |
| Text/References: | <ol> <li>W. Harrison, Solid State Theory Tata McGraw Hill.</li> <li>N. Ashcroft and N.D. Mermin, Solid State Physics, Holt, Rinehart and<br/>Winston, 1972.</li> <li>J. Ziman, Principles in the Theory of Solids, Cambridge.</li> </ol>                                                                                                                                                                                                                             |

| Course Code: | PH 561             |
|--------------|--------------------|
| Title:       | Ultrafast Sciences |
| Credits:     | 6                  |
| Туре         | Т                  |
| Lecture      | 2                  |
| Tutorial     | 1                  |
| Practical    | 0                  |

| Description:     | Ultrafast science: Introduction, Spatio-temporal properties of ultrashort       |
|------------------|---------------------------------------------------------------------------------|
|                  | pulses Generation of ultra-short pulses, Material dispersion and                |
|                  | compensation Nonlinear optics, Ultrashort pulse characterization Pulse          |
|                  | propagation through various media, Pulse-shaping and coherent                   |
|                  | control Applications in atomic and molecular physics, Applications in condensed |
|                  | matter physics and materials science, Applications in bio-photonics and femto-  |
|                  | chemistry                                                                       |
|                  |                                                                                 |
|                  | High power lasers, Extreme nonlinear effects: Experiments and theory Intense    |
|                  | field effects and attosecond science (Theory and experiments)                   |
| Text/References: | 1 Nonlinear Ontics by B. Boyd (Elsevier/Academic Press)                         |
|                  | 2. Ultrafast Optics by A. M. Weiner (Wiley)                                     |
|                  | 3. Ultrashort Laser Pulse Phenomena by J-C Diels and W. Rudolph                 |
|                  | (Elsevier/Academic Press)                                                       |
|                  | 4. Frequency resolved optical gating: The measurement of ultrashort laser       |
|                  | pulses by R. Fredino (Springer)                                                 |
|                  | 5. Ultralast Biophotonics by P. Vasa and D. Mathur (Springer)                   |
|                  | 6. Lectures on Oltrafast Intense Laser Science by K. Yamanuchi (Springer)       |
|                  |                                                                                 |

| Course Code: | PH 563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:       | Group Theoretical Methods in Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Credits:     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Туре         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lecture      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tutorial     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Practical    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Description: | Discrete groups and applications: cyclic groups, permutation groups, point<br>groups, irreducible representations, great orthogonality theorem, character<br>tables. Applications like selection rules, normal modes of molecules possessing<br>symmetry and energy splitting due to symmetry breaking which will highlight<br>the power of group theory tools.                                                                                                                                                                        |
|              | <b>Continuous groups</b> .: space translations, time translations, rotations and their symmetry properties. A formal introduction of Lie algebras and Lie Groups with particular emphasis on Lie groups SU(2) and SU(3). The applications in quantum mechanical angular momentum and particle physics quark models. Young Tableau approach of understanding tensor product and irreducible representations of SU(N). Lorentz group, dynamical symmetry for appreciating the elegant way of obtaining energy spectrum of hydrogen atom. |

| Text/References: | <ol> <li>Group theory and its application to Physical Problems, M. Hammermesh,<br/>1965 Wiley-VCH Verlag GmbH &amp; Co.</li> </ol>   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                  | <ol> <li>Lie groups and lie algebras for physicists - Das and Okubo</li> <li>Lie algebras in particle physics - H. Georgi</li> </ol> |

| Course Code:     | PH 565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Semiconductor Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Description:     | An introduction to semiconductors, their crystal structure and their band<br>structure. Intrinsic and extrinsic semiconductors, charge carriers and their<br>effective masses. Methods of electronic structure calculations for<br>semiconductors: plane wave methods, pseudo-potential approaches, semi-<br>empirical pseudo-potential method, k.p method, Luttinger Hamiltonian, and the<br>tight-binding approach. Electron-phonon coupling. Optical properties of<br>semiconductors: absorption edges, effective mass approximation, excitons,<br>polaritons. Electron transport properties: high-fieldeffects and magneto-<br>transport. |
| Text/References: | <ol> <li>P.Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer,<br/>1992.</li> <li>K. Seeger, Semiconductor Physics, 9th Edition, Springer 2004.</li> <li>C. Hamaguchi, Basic Semiconductor Physics, Springer 2001.</li> <li>H. Haug and S.W. Koch, Quantum Theory of the optical and electronic<br/>Properties of Semiconductors, 4th Edition World Scientific 2004.</li> </ol>                                                                                                                                                                                                                                                   |

| Course Code: | PH 567                                                                                                                                                                                                                                                                                                                               |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:       | Nonlinear Dynamics                                                                                                                                                                                                                                                                                                                   |
| Credits:     | 6                                                                                                                                                                                                                                                                                                                                    |
| Туре         | Т                                                                                                                                                                                                                                                                                                                                    |
| Lecture      | 2                                                                                                                                                                                                                                                                                                                                    |
| Tutorial     | 1                                                                                                                                                                                                                                                                                                                                    |
| Practical    | 0                                                                                                                                                                                                                                                                                                                                    |
| Description: | Physics of nonlinear systems, dynamical equations and constants of motion,<br>phase space, fixed points, stability analysis, bifurcations and their classifications,<br>Poincar`e section and iterative maps. One dimensional noninvertible maps,<br>simple and strange attractors, period doubling and universality, intermittency, |

|                  | invariant measure, Lyapunov exponents. Higher dimensional systems, Henon<br>map, Lorenz equations. Fractal geometry and examples of simple and fat<br>fractals, concept of dimensions. Hamiltonian systems, integrability, Liouville's<br>theorem, action and angle variables, introduction to perturbation techniques,<br>KAM theorem, area preserving maps, chaos and stochasticity.                      |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Text/References: | <ol> <li>I. Percival and D. Richards, Introduction to Dynamics, Cambridge<br/>University Press, 1982.</li> <li>Steven H. Strogatz, Nonlinear Dynamics and Chaos, Addison<br/>Weseley,1994.</li> <li>Edward Ott, Chaos in Dynamical Systems, Cambridge University<br/>Press,1993.</li> <li>E. A. Jackson, Perspectives of Nonlinear Dynamics, Vol. 1&amp;2, Cambridge<br/>University Press, 1989.</li> </ol> |

| Course Name      | Applied Solid State Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code:     | PH 569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Description:     | Boltzmann transport equation, scattering and relaxation time. Optical properties<br>of solids, excitations, concept of plasmons, polarons and polaritons. Dielectric<br>function, dielectric and ferroelectric materials.<br>Band structure of semiconductors, density of states and conductivity effective<br>masses, carrier diffusion processes, excess carrier life time, recombination and<br>trap centres, photo conductivity, electronic properties of surfaces. Dia, para and<br>ferro magnetism, magnetic domains, magnetic materials and application.<br>Magnetic resonance techniques, spin-spin and spin-lattice relaxation.<br>Superconductivity, Meissner effect, tunneling in superconductors, Josephson<br>junctions, squids, superconducting magnets. |
| Text/References: | <ol> <li>N. Ashcroft and N.D. Mermin, Solid state physics</li> <li>C. Kittel, Introduction to solid state physics, 7th ed., John Wiley 1997.</li> <li>J. R. Christman, Fundamentals of Solid State Physics. John Wiley 1988</li> <li>Ibach and Luth, Solid State Physics, Springer Verlag 2009</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Course Name  | Nanoscience: Fundamentals to Fabrication |
|--------------|------------------------------------------|
| Course Code: | PH 575                                   |

| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description:     | Physical Properties of Nanomaterials:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | Effect of size on thermal, electrical, mechanical, optical and magnetic properties<br>of nanoscale materials, diffusion properties, dielectric properties, Surface area to<br>aspect ratio, Quantum confinement size effects, bang gap effect at nanoscale.<br><b>Synthesis of Nanomaterials</b><br>The principles of nucleation and growth, thermodynamics, kinetics, and<br>mechanisms of Nucleation and Growth of nanocrystals, crystallography, surfaces<br>and Interfaces, Applications to growth from solutions, melts and vapors. |
|                  | NanoFabrication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | Introduction to micro/nano fabrication, photolithography, x-ray lithography, e-<br>beam lithography, nanoimprint lithography, stamping techniques for micro/nano<br>fabrication, methods and applications of lithographic techniques, AFM based<br>nanolithography (DPN) and nanomanipulation, self-assembly, template-based<br>growth of nanorod arrays, 3D nanofabrication using focused ion beam (FIB),<br>MEMS and NEMS, nano and micro-structured semiconductor materials for<br>microelectronics.                                  |
| Text/References: | Frank J. Owens and Charles P.Poole, The Physics and Chemistry of Nano Solids, Wiley-Interscience, 2008.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | Guozhong Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, World Scientific 2011                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | Dieter Vollath, Nanomaterials: An Introduction to Synthesis, Properties and Applications, John Wiley and Sons 2013                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                  | C. N. R. Rao, Achim Mller, A. K. Cheetham, The Chemistry of Nanomaterials:<br>Synthesis, Properties and Applications, John Wiley and Sons 2007                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | A S Edelstein and R C Cammarata, Nanomaterials Synthesis, Properties and Applications, IOP Publishing Ltd 1996.                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | Stephen A. Campbell: Fabrication Engineering at the Micro- and Nanoscale, 4th                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Edition. Oxford University Press 2012                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| P. V. Zant, Microchip Fabrication, McGraw-Hill Education; 5 edition 2004 ISBN:<br>978-0071432412                                                          |
| Ning Xi and King Lai, Nano Optoelectronic Sensors and Devices: Nanophotonics from Design to Manufacturing, Elsevier Inc. 2011, eBook ISBN: 9781437734720. |
| Sam Zhang, Nanostructured thin films and coatings: Mechanical Properties, CRC Press 2010.                                                                 |
| H. Baltes et al, Enabling technology for MEMS and Nanodevices, Wiley-VCH, 2008                                                                            |

| Course Name      | Advanced Topics in Astro-particle Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code:     | PH 813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description:     | <ul> <li>Recap of Cosmography and the FLRW cosmological models.</li> <li>Thermal history of the Universe</li> <li>Non-equilibrium processes possible origins of Dark Matter and matter-anti-matter asymmetry.</li> <li>Phase transitions and cosmological defects.</li> <li>Inflationary universe models.</li> <li>Late time cosmology and formation of large scale structures.</li> <li>Approaches to quantum cosmology</li> <li>Dark matter experiments</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     |
| Text/References: | 1.011E. Kolb and M. Turner, 302223 The Early Universe.302224, Frontiers in<br>Physics, 19942.011 Lars Bergstr 303266m and Ariel Goobar, 302223Cosmology<br>and Particle Astrophysics302224, Springer Praxis Books, 20063.0110fer Lahav &<br>Yasushi Suto , 302223Measuring our Universe from Galaxy Redshift<br>Surveys302224, 2004, https://link.springer.com/article/10.12942/lrr-2004-<br>84.011J. Fernando Barbero G. & Eduardo J. S. Villase303261or<br>302223Quantization of Midisuperspace Models302224, 2010,<br>https://link.springer.com/article/10.12942/lrr-2010-65.011Neal Jackson,<br>302223The Hubble Constant302224, 2,<br>https://link.springer.com/article/10.1007/lrr-2-26.011Timothy J. Sumner,<br>302223Experimental Searches for Dark Matter302224, 2002,<br>https://link.springer.com/article/10.12942/lrr-2002-4 |

| Course Name  | Standard Model of Particle Physics |
|--------------|------------------------------------|
| Course Code: | PH 815                             |

| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Description:     | Symmetries of strong interactions and QCD. Parton model and perturbative QCD. RG<br>analysis of scaling and scaling violations. Operator analysis of e-N scattering.<br>Moments of Structure Functions and Wilson Coefficients. RG Equation for Wilson<br>Coefficients. Spontaneous symmetry breaking (SSB). O(N) models. Goldstone`s<br>theorem. Abelian and Non-abelian Higgs mechanism and SSB in gauge theories.<br>Renormalization of spontaneously broken gauge theories and R-ξ gauge. Goldstone<br>boson equivalence theorem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Text/References: | <ol> <li>Paul Langacker, 302223The Standard Model and Beyond302224, CRC Press<br/>20172.</li> <li>John F. Donoghue, Eugene Golowich and Barry R. Holstein," Dynamics of the<br/>Standard Model", 2nd edition, Cambridge University Press (2014)</li> <li>C. P. Burgess and G. D. Moore, 302223The standard model: A<br/>primer302224, Cambridge Univ. Press (2007)4. Palash Pal, 302223An<br/>Introductory Course of Particle Physics CRC Press; 1st edition, 20145.</li> <li>T. P. Cheng and L-F Lee, 302223Gauge Fields and Elementary<br/>ParticlePhysics.302224 Oxford Science Publications, 19846.</li> <li>R. K. Ellis, W. J. Stirling and B. R. Webber, 302223QCD and<br/>colliderphysics302224. Cambridge Monographs on Particle Physics, Nuclear<br/>Physics and Cosmology, 19967.</li> <li>Mulders, M. (ed.) ; Duhr, C. (ed.) 302223Proceedings of the 2018 European<br/>School of High-Energy Physics302224, https://e-<br/>publishing.cern.ch/index.php/CYRSP/issue/view/92, 20188.</li> <li>Yuval Grossman, Philip Tanedo, 302223Just a Taste: Lectures on Flavor<br/>Physics ", https://www.classe.cornell.edu/~pt267/files/notes/FlavorNotes.pdf,<br/>2010</li> </ol> |

| Course Name  | Specialized Topics in QFT and Beyond Standard Model Physics |
|--------------|-------------------------------------------------------------|
| Course Code: | PH 817                                                      |
| Credits:     | 6                                                           |
| Туре         | Т                                                           |
| Lecture      | 2                                                           |
| Tutorial     | 1                                                           |
| Practical    | 0                                                           |
| Description:     | Grand Unified Theories: motivation, construction and constraints.                |
|------------------|----------------------------------------------------------------------------------|
| -                | Supersymmetry: motivation, construction and constraints. Majorana Neutrinos      |
|                  | and challenges in Neutrino mass models. Particle Physics solutions to Dark       |
|                  | Matter. QFT at finite temperature. Restoration of spontaneously broken           |
|                  | symmetry at finite temperature. Topology of gauge fields, sphalerons, instantons |
|                  | and strong CP problem Chiral Lagrangian and Chiral Perturbation Theory. Models   |
|                  | of confinement and large N gauge theories                                        |
| Text/References: | 1. S. Weinberg, 302223Quantum Field Theory302224 vol. II and vol. III,           |
|                  | Cambridge University Press, 19982. Mark Srednicki, 302223Quantum Field           |
|                  | Theory302224,;Cambridge University Press, 20073. M. Shifman,                     |
|                  | 302223Advanced Topics in Quantum Field Theory: A Lecture Course302224,           |
|                  | Cambridge University Press, 24. Stephen P. Martin, 302223A Supersymmetry         |
|                  | Primer302224,https://arxiv.org/abs/hep-ph/97093565. Csaba Csaki, Salvator        |
|                  | Lombardo, Ofri Telem, 302223TASI Lectures onNon-Supersymmetric BSM               |
|                  | Models302224, https://arxiv.org/abs/1811.042796. Anson Hook, 302223TASI          |
|                  | Lectures on the Strong CP Problem and                                            |
|                  | Axions302224, https://arxiv.org/abs/1812.026697. Kai Zuber, "Neutrino Physics",  |
|                  | CRC Press, 3nd edition, 20208. Davidson et al., 302223Effective Field Theory in  |
|                  | Particle Physics and Cosmology: Lecture Notes of the Les Houches Summer          |
|                  | School: Volume 108,July 2017302224., OUP Oxford (2020)                           |

| Course Name  | Advanced Astrophysics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code: | PH 819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Credits:     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Туре         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lecture      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tutorial     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Practical    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description: | Stellar evolution: Basic equations of stellar structure, Stellar energy sources,<br>qualitative description of numerical solutions for stars of different mass,<br>homologous stellar models, Evolution in the HR-Diagram, End state of stars,<br>compact objects, Chandrashekhar mass, Compact Binaries: Types, Roche lobe<br>mechanism, Different formation channels, Observational probe Galaxies<br>Galaxies as self-gravitating systems, Virial theorem, Potentials, and orbits,<br>Rotation curves Spiral galaxies, spiral structure, The collisionless-Boltzmann<br>equation, Elliptical galaxies, Supermassive black holes in galaxies High energy<br>astrophysics Supernova & supernova remnants, neutron stars, pulsars and<br>magnetars, X-ray binaries, gamma-ray bursts & active galactic nuclei, Accretion<br>process in astrophysics, Astrophysical jets - emission from jets, beaming and<br>boosting, superluminal motion, Cosmic rays, Radio emission from the Galaxy. |

| Text/References: | 1. Modern Astrophysics, B. W. Carroll and D. A. Ostlie, Addison -Wesley, 2007. 2.  |
|------------------|------------------------------------------------------------------------------------|
|                  | The physical universe, F. Shu, University Science books, 1982. 3. Astrophysics for |
|                  | Physicists, Arnab Rai Choudhuri, Cambridge University Press, 2010 4. Theoretical   |
|                  | Astrophysics, T. Padmanabhan, Cambridge University Press, 2 011 011011             |
|                  |                                                                                    |

| Course Name      | Gravitational Wave Physics and Astronomy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code:     | PH 821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Description:     | A brief recap of General Relativity: Einstein's equations, the Newtonian limit of GR, Linearized gravity Gravitational Waves: Description, Propagation, Physical properties, Effects of gravitational waves, Energy and momentum carried by gravitational waves, Gravitational radiation luminosity, Far zone, and Near Zone solutions, and quadrupole formula Sources of Gravitational waves: Estimation from terrestrial sources, coalescing compact binaries, gravitational wave bursts, continuous gravitational waves from pulsars, stochastic gravitational-wave background Detectors: Historical perspective, Laser interferometric detectors; Principle of detection, Ground-based LIGO, Virgo, KAGRA detectors, Space-based LISA, Einstein Telescope; Pulsar timing arrays Astronomy: Discovery of Hulse Taylor Binary pulsar, Gravitational wave discovery of Binary black hole merger, Astrophysics and Cosmology with compact binary mergers, HandsOn exercises with GW open data |
| Text/References: | <ol> <li>A first course in General Relativity by B. F. Schutz , Cambridge University Press (1985)</li> <li>Gravitational Wave Physics and Astronomy Jolien Creighton and Warren Anderson, Wiles, Series in Cosmology (2011)</li> <li>Gravitational Waves Vol 1: Theory and Experiments by Michele Maggiore, Oxford University Press (2007)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## Elective Courses (Even semester)- open to all

| Course Code      | РН 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Thin film Physics and Technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Description:     | Vacuum technology, gas transport and pumping systems, pressure<br>measurements, physical and chemical vapour deposition processes, sputtering<br>and plasma CVD, deposition by electron beams, arc plasma and pulsed laser,<br>Molecular beam epitaxy and metal organic CVD, Chemical solution based<br>deposition processes, electrochemical deposition, Langmuir Blodgett and self-<br>assembly processes, Physics of thin film deposition, adsorption, surface<br>deposition, nucleation, growth and structure development, surface structure,<br>role of surfaces, epitaxial growth, lattice mismatch, strain, growth modes, self-<br>organization, self-aligned structures, heterostructures, multilayer superlattice<br>structures, patterning techniques for IC, MEMS and other device fabrications,<br>application of thin films. |
| Text/References: | <ul> <li>K. L. Chopra, Thin films phenomena, Mc Graw Hill 1968</li> <li>M. Ohring, Materials science of thin films, Academic press 1992</li> <li>D. L. Smith, Thin films deposition: Principles and practices, Mc. Graw Hill 1995</li> <li>J. E. Mahan, Physical vapour deposition, John Wiley 2000</li> <li>K. W. Kolasinski, Surface science, John Wiley 2002</li> <li>J. H. Fendler, Nanoparticles and nanostructured films, Springer 2000</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                  |

| Course Code:     | PH 540                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Elementary Particle Physics                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Description:     | Phenomenology of strong and weak interactions. Conserved quantum numbers.<br>Leptons, nucleons and mesons. Partial conservation of axial current. Non-abelian<br>gauge theories. Spontaneous breaking of global and local symmetries. The Higgs<br>mechanism. Weinberg Salam Theory. Quantum Chromodynamics. Accelerator<br>experiments and detectors. Low energy and non-accelerator experiments.<br>Questions beyond the Standard model. Unification proposals. |
| Text/References: | 1. F. Halzen and A.D. Martin, Quarks and Leptons, John Wiley, 1984                                                                                                                                                                                                                                                                                                                                                                                                |

| 2. G. Kane, Modern Elementary Particle Physics, Addison Wesley, 1987 |
|----------------------------------------------------------------------|
| 3. K. Huang, Quarks, Leptons and Gauge Fields, World Scientific,     |

| Course Code:     | PH 544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | General Theory of Relativity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pre-requisite:   | This course is a basic introduction to the general theory of relativity and its                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | Applications to isolated macroscopic objects and cosmology. Prerequisite:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Description:     | 1. Covariance of Physical Laws [1lecture]2. Special Relativity [2 lectures]3. The<br>Equivalence Principle [2lectures]4. Space and Space-time Curvature [4 lectures]5.<br>Tensors in Curved Space-time [4 lectures]6. The Geodesic equation [2 lectures]7.<br>geodesic<br>Deviation Equation [2 lectures]8. Curvature and Einstein Field equations [4<br>lectures]9. Geometry Outside of a Spherical Star [3lectures]10. Tests of General<br>Relativity [3 lectures]11. Gravitational<br>Badiation [3 lectures]12. Black Holes[2 lectures]13. Cosmology [4 |
|                  | lectures].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Text/References: | <ol> <li>Gravity- An introduction to Einstein's general relativity – James B. Hartle<br/>(Addison-Wesley, 2003)</li> <li>Gravitation and Cosmology - S. Weinberg (Wiley, 1972)</li> <li>Space-time and Geometry: An Introduction to General Relativity - Sean<br/>Carroll (Pearson, 2003).</li> <li>Also see the Arxiv: gr-qc/97120194.</li> <li>Introduction to General Relativity - J. V. Narlikar (Cambridge)</li> <li>Classical Theory of Fields - L. D. Landau and E. M. Lifshitz (Butterworth-<br/>Heinemann)</li> </ol>                             |

| Course Code: | PH 546                                                                 |
|--------------|------------------------------------------------------------------------|
| Title:       | Quantum Optics                                                         |
| Credits:     | 6                                                                      |
| Туре         | Т                                                                      |
| Lecture      | 2                                                                      |
| Tutorial     | 1                                                                      |
| Practical    | 0                                                                      |
| Description: | Quantum theory of light: field quantization, lamb shift, quantum beats |
|              |                                                                        |

|                  | Quantum theory of coherence: photon detection and quantum coherence<br>functions, first order coherence and Young's double source experiment, second<br>order coherence, physics behind Hanburry-Brown and Twiss experiment,<br>interference of two photons, photon antibunching, Poissonian and sub-<br>Poissonian light, photon counting and photon statistics.                                                                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Classical and non-classical light: Coherent, Fock and squeezed states of light, coherent state as an eigen state of annihilation operator and as a displaced harmonic oscillator state, properties of coherent state, physics of squeezed states, squeezed state and uncertainty relation, squeezed coherent state, quadrature variance, multimode squeezing, squeezing via nonlinear optical processes, applications of squeezed states for quantum noise reduction beyond standard short noise limit. |
|                  | EPR paradox, hidden variable, Bell's theorem and quantum cryptography,<br>Quantum non-demolition (QND) measurement: conditions for QND, QND<br>measurement of photon number by optical Kerr effect and by dispersive atom-<br>field coupling, QND measurement in optical parametric processes<br>Quantum optical tests of complimentarity: a micro maser with path detector,<br>quantum eraser and quantum optical Ramsey fringes                                                                       |
| Text/References: | <ol> <li>Quantum Optics, M.O. Scully and M.S. Zubairy, Cambridge University<br/>Press (2001).</li> <li>Elements of quantum optics, P. Meyster and M. Sargent, Springer Verlag<br/>2001</li> <li>Quantum Optics, D. F. Walls and G. J. Miburn, Springer Verlag</li> <li>Quantum Optics: An Introduction, Mark Fox, Oxford Master Series in<br/>Physics (2006).</li> </ol>                                                                                                                                |
|                  | 5. Introductory Quantum Optics, C.C. Gerry and P.L. Knight, Cambridge University Press (2005).                                                                                                                                                                                                                                                                                                                                                                                                          |

| Course Code: | PH 550                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:       | Soft Matter Physics                                                                                                                                                                                                                                                                                                                                                                                             |
| Credits:     | 6                                                                                                                                                                                                                                                                                                                                                                                                               |
| Туре         | Т                                                                                                                                                                                                                                                                                                                                                                                                               |
| Lecture      | 2                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tutorial     | 1                                                                                                                                                                                                                                                                                                                                                                                                               |
| Practical    | 0                                                                                                                                                                                                                                                                                                                                                                                                               |
| Description: | Basic phenomenology, Liquid crystals, polymers, membranes, surfactants,<br>colloids, gels. Phase transitions, Landau theory, order parameter (conserved and<br>non-conserved), nucleation and spinodal decomposition. Nematic liquid crystals,<br>Mean field theory for isotropic-nematic transition, Landau-deGennes theory,<br>Effect of spatial gradients, Onsager's theory for isotropicnematic transition. |

|                  | Polymers, random walk, gaussian chain, excluded volume, Flory theory,             |
|------------------|-----------------------------------------------------------------------------------|
|                  | Deforming polymer chains, Temperature effects, Field theories and RG              |
|                  | approach, solutions, melts, dynamics – Rouse and Zimm. Membranes and              |
|                  | interfaces – Free energy and shape transitions. Flow and deformation of soft      |
|                  | matter, mechanical properties and molecular models, colloids – rheology and       |
|                  | dimensional analysis, viscoelasticity and response functions. Optional: • Elastic |
|                  | soft matter, Fundamentals, Kuhn theory of rubber elasticity, polymer gels.        |
|                  | Physics of jamming, Supercooled liquids, and search for a transition, Jamming     |
|                  | phase diagram for glasses, foams, and granular matter                             |
| Text/References: | 1. M. Doi, Soft Matter Physics, Oxford University Press,                          |
|                  | 2. P.M. Chaikin& T.C. Lubensky, Principles of Condensed Matter Physics,           |
|                  | CambridgeUniversity Press,                                                        |
|                  | 3. M. Rubinstein & R.H. Colby, Polymer Physics, Oxford University Press,          |
|                  | P.G. de Gennes& J. Prost,                                                         |
|                  | 4. The Physics of Liquid Crystals, Oxford University Press,                       |
|                  | 5. M. Doi& S.F. Edwards, The Theory of Polymer Dynamics, Oxford                   |
|                  | University Press,                                                                 |
|                  | 6. P.G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University        |
|                  | Press.                                                                            |
|                  | 7. W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions              |
|                  | Cambridge University Press 1989                                                   |
|                  |                                                                                   |

| Course Code:     | PH 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Computational Many Body Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Description:     | Basic introduction of PHython, Scipy, Numpy, Mpi4Py, Exact Diagonalization,<br>Tight Binding Models, Graphene, Chern Insulators, Quantum Hall effects, Lanczos<br>and Krylov subspace methods. Kernel polynomial methods for thermodynamics<br>quantities, Mean-field solutions, Interfacing Hamiltonian, Fock space<br>representation, Density functional theory, Entanglement based methods.<br>Density matrix renormalization group, Time evolving matrix product states,<br>Introduction to Monte Carlo methods. Phase transition and Ising model,<br>Optional: Introduction to Quantum Monte Carlo and Dynamical mean field<br>theory. |
| Text/References: | 1. Numerical Phython : A Practical Techniques Approach for Industry,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | Kobert Jonansson, Apress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | 2. Computational Physics J.W. Inijsen, Cambridge University Press (2007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| 3. Review on DMRG by Ulrich Schollwock. http://arxiv.org/abs/1008.3477 (2010)                     |
|---------------------------------------------------------------------------------------------------|
| 4. The kernel polynomial method, WeiBe et.al., Rev.Mod. Phys.78.275 (2006)                        |
| <ol> <li>Lecture Note by Anders W. Sandvik http://arxiv.org/abs/1101.3281v1<br/>(2011)</li> </ol> |

| Course Code:     | PH 556                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Astrophysics                                                                                                                                                                                                                                                                                                                                                                 |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                            |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                            |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                            |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                            |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                            |
| Description:     | Introduction to stellarium, telescopes and multi-wavelength/multi-messenger<br>astronomy, sizes and distances in astrophysics, astrometry, photometry<br>The rest of the course may follow either a mix of the following topics or explore a<br>given topic in depth:                                                                                                        |
|                  | Stellar physics: Stellar physics observables (spectra, flux), H-R diagrams and interpretation, stellar structure equations, nuclear physics and nuclear reactions in stars, lifecycle of stars, birth of stars – giant molecular clouds and Jeans criteria, main sequence stars, post-main sequence stars, white dwarfs and Chandrashekhar limit, neutron stars, black holes |
|                  | Galactic physics: Distance ladder in astronomy, observables in galaxies (surface<br>brightness), galaxy classification and Hubble sequence, Faber-Jackson and Tully-<br>Fisher relations, Dynamical mass, Dark matter in galaxies, potential theory and<br>circular speeds, rotation curves, inferred properties of dark matter halos                                        |
|                  | Cosmology: Hubble expansion, Introduction to general relativity and curved<br>space-time, geodesics, FRW metric and Friedmann equations, solutions to<br>Friedmann equations in different epochs, cosmological history of our universe,<br>dark matter and dark energy, global cosmological observables and the expansion<br>rate                                            |
| Text/References: | General Astrophysics:                                                                                                                                                                                                                                                                                                                                                        |
|                  | An introduction to astronomy and astrophysics - Pankaj Jain<br>An Introduction to Modern Astrophysics - Carroll and Ostlie<br>Astrophysical concepts - Harwitt                                                                                                                                                                                                               |

| Additional References:                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------|
| Stellar physics:                                                                                                                       |
| An introduction to stellar astrophysics - Francis LeBlanc<br>Black holes, White dwarfs and neutron stars- Shapiro<br>Galactic Physics: |
| Galactic Astronomy - Binney and Tremaine<br>Galactic Dynamics - Binney and Tremaine                                                    |
| Cosmology:                                                                                                                             |
| Modern cosmology - Scott Dodelson<br>The early universe- Kolb and Turner                                                               |

| Course Code:     | PH 562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:           | Continuum Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Description:     | 1) Tensors: co/contra variant tensors, contraction, Levi-civita symbols. 2) Fluid mechanics: Continuity and Euler equations, Navier-Stokes equation for viscous fluids, stokes solution in various geometries, drag, vorticity, stream lines. If times permits, surface (capillary) waves. 3) Elasticity: Stress, Strain, constitutive equation, shear, extension, torsion, bending, examples in various geometries and boundary conditions. 4) Free energy of continuum media: polymer, membrane, liquid-crystals and fluctuations (if time permits). |
| Text/References: | <ol> <li>N.C. Rana and P.S. Jog: Classical Mechanics, Tata McGraw Hill, 1991. 2.</li> <li>L.D. Landau and E.M. Lifshitz: Theory of Elasticity, Fluid Mechanics.</li> <li>L.D. Landau and E.M. Lifshitz: Fluid Mechanics (both 2,3 from Pergamon<br/>Press)</li> <li>P.M. Chaikin&amp; T.C. Lubensky, Principles of Condensed Matter Physics:<br/>(Cambridge University Press), Paperback-1999.</li> <li>David Rubin, Erhard Krempl, and W. Michael Lai, Introduction to<br/>Continuum Mechanics, Butterworth-Heinemann, 2009</li> </ol>                |

| Course Code: | PH 564 |
|--------------|--------|
|--------------|--------|

| Title:           | Methods in Experimental Nuclear and Particle Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Credits:         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Description:     | Passage of radiation through matter : Interaction of heavy charged particles,<br>neutrons, gamma rays and relativistic particles. Radiation Detection: Detection<br>mechanism, characteristics of detectors. Detectors in Nuclear Physics: gas<br>detectors, scintillation counters, solid state detectors. Detectors in Particle<br>Physics: Drift Chambers, spark chambers, bubble chambers, time projection<br>chambers. Accelerators: Van de Graff, LINAC, Cyclotrons, Synchrotron, Colliders.<br>Pulse Processing: Timing and Energy measurements, data acquisition and<br>analysis. CAMAC and NIM Standards. |
| Text/References: | <ol> <li>W. R. Leo, Techniques for Nuclear and Particle Physics Experiments,<br/>Springer Verlag, 1994.</li> <li>M. S. Livingston and J.P. Blewett, Particle Accelerators, McGraw-Hill, New<br/>York, 1990.</li> <li>Glenn F. Knoll, Radiation Detection and Measurements, John Wiley and<br/>Sons, 1989.</li> </ol>                                                                                                                                                                                                                                                                                               |

| Course Code  | PH 566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:       | Advanced Simulation Techniques in Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Credits:     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Туре         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lecture      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Tutorial     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Practical    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Description: | Basic Numerical Methods and Classical Simulations: Review of differentiation,<br>integration (quadrature), and finding roots. Integration of ordinary differential<br>equations. Monte Carlo simulations, applications to classical spin systems.<br>Classical Molecular Dynamics. Quantum Simulations: Time-independent<br>Schrodinger equation in one dimension (radial or linear equations). Scattering<br>from a spherical potential; Born Approximation; Bound State solutions. Single<br>particle time-dependent Schrodinger equations. Hartree-Fock Theory: restricted<br>and unrestricted theory applied to atoms. Schrodinger equation in a basis:<br>Matrix operations, variational properties; applications of basis functions for<br>atomic, molecular, solid-state and nuclear calculations. Mini-projects on<br>different fields of physics, e.g., Thermal simulations of matter using Car-<br>Parrinello molecular dynamics; Many-Interacting-Particle Problems on Hubbard<br>and Anderson model for electrons using Lanczos method (exact diagonalisation) |

|                  | for the lowest states; Quantum Monte Carlo methods; Computational methods       |
|------------------|---------------------------------------------------------------------------------|
|                  | for Lattice field theories; Microscopic mean-field theories (Hartree-Fock,      |
|                  | Bogoliubov and relativistic mean-field); methods in nuclear many-body           |
|                  | problems.                                                                       |
| Text/References: | S. J. Chapman, Introduction to Fortran 90 and 95, Mc Graw Hill, Int. Ed.1998.   |
|                  | S. E. Koonin and D. C. Meredith, Computational Physics, Addison-Wesley, 1990.   |
|                  | Tao Pang, An Introduction to Computational Physics, Cambridge Univ Press, 1997. |
|                  | R. H. Landau and M. J. P. Mejia, Computational Physics, John Wiley, 1997.       |
|                  | J. M. Thijssen, Computational Physics, Cambridge Univ Press, 1999.              |
|                  | K. H. Hoffmann and M. Schreiber, Computational Physics, Springer, 1996.         |
|                  |                                                                                 |

| Course Code:     | PH 572                                                                     |
|------------------|----------------------------------------------------------------------------|
| Title:           | Special Topics in Elementary Particle Physics                              |
| Credits:         | 6                                                                          |
| Туре             | Т                                                                          |
| Lecture          | 2                                                                          |
| Tutorial         | 1                                                                          |
| Practical        | 0                                                                          |
| Description:     | Renormalisation in QED.                                                    |
|                  | Ward-Takahashi Identities. Functional methods, effective action, expansion |
|                  | in fields and derivatives. Renormalisation Group. Wilson interpretation of |
|                  | RG. Non-abelian gauge theories. Fadde'ev-Popov method of quantization.     |
|                  | BRST symmetry and renormalisation. Chiral fermions and anomalies.          |
|                  | Optional material: Poincare group and classification of space-time         |
|                  | fields by mass and spin or helicity. Systematic renormalisation of phi4    |
|                  | theory.                                                                    |
| Text/References: | 1. P. Ramond, Field Theory: A Modern Primer 2nd Ed.                        |
|                  | 2. W. Greiner and J. Reinhardt, Field quantization.                        |
|                  | 3. W. Greiner and J. Reinhardt, Quantum Electrodynamics.                   |
|                  | 4. M. Peskin and D. V. Schroder, Quantum Field Theory                      |
|                  | 5. S. Weinberg, Quantum Theory of Fields vol.s I and II                    |
|                  | 6. V. Parameswaran Nair, Quantum Field Theory: A modern perspective,       |
|                  | Springer 2005                                                              |

| Course Name   | Physics of Semiconductor Devices |
|---------------|----------------------------------|
| Course code   | PH 574                           |
| Total Credits | 6                                |
| Туре          | Т                                |
| Lecture       | 2                                |
| Tutorial      | 1                                |

| Practical   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description | <b>Basics of Semiconductors:</b> Brief review of Band structure. Band diagram of few important semiconductors: Si, Ge, GaAs, GaN, constant energy surface, density of states, effective mass, different directions in the Brillouin zone and their common names. Direct and indirect gaps.                                                                                                                                       |
|             | <b>Doping</b> : Hydrogenic impurity model in detail (show how to construct impurity wave function using the band wave functions as the basis.) shallow and deep donors, Probability of Ionisation of a dopant (Saha ionization equation) Fermi level, Intrinsic, extrinsic and compensated semiconductors, carrier statistics, carrier density product $np = n_i^2$ [How does one experimentally measure donor level positions?] |
|             | <b>Boltzmann transport equation,</b> Mobility, drift, diffusion, electrochemical potential and its difference with electrostatic potential. Discuss clearly the questions like what does a voltmeter actually measure.                                                                                                                                                                                                           |
|             | <b>Band-bending and band discontinuity at the interface:</b> Poisson-Boltzmann formulation: Metal-semiconductor junctions, Schottky and Ohmic contacts, p-n junction, derivation of forward and reverse bias I-V equation, tunnel diodes (NDR region and its use in oscillator circuits), Gunn effect, p-i-n structures. BJTs (with band diagrams under bias), Triac/SCR, Metal-insulator-semiconductor (MIS) structures.        |
|             | <b>Field effect devices:</b> JFET, MOSFET Band diagram, operation regimes, principle of operation of MOSFETs, Basic derivation of the inversion voltage (use Poisson-Boltzmann). current-voltage and capacitance-voltage characteristics of MOSFET, Source-Drain/Transfer characteristics of MOSFET, comparison with BJT's $I_C - V_{CE}$ curves.                                                                                |
|             | <b>Band engineering:</b> Poisson Schrodinger equation, the envelope function approximation, alloying, strain and polarization charges at interfaces, Modulation doping, Single heterojunction, Quantum wells. Explain why modulation doping gives higher mobility. HEMT devices (GaAs-AlGaAs, GaN-AlGaN) Formation of the 2DEG at the interface, compare with MOSFETs.                                                           |
|             | <b>Optoelectronic devices:</b> Carrier statistics under illumination condition, Generation and Recombination of Carriers, Quasi-Fermi levels, photovoltaic Effect, working of Solar Cells, Current-Voltage characteristics. Shockley-Quessar limit.                                                                                                                                                                              |
|             | <b>Light emitting diodes</b> (LED), Internal Quantum Efficiency, External Quantum Efficiency, How to improve quantum efficiency of LEDs, Laser-diodes.                                                                                                                                                                                                                                                                           |

| Text Reference | (i) Solid State Electronic Devices - B. G. Streetman and S. K. Banerjee, Boston :     |
|----------------|---------------------------------------------------------------------------------------|
|                | Pearson, 7 <sup>th</sup> edition, 2015                                                |
|                | (ii) Physics of Semiconductor Devices -S.M. Sze and K. K. Ng,                         |
|                | Wiley- Interscience, 3rd edition, 2006.                                               |
|                | (iii) Semiconductor Physics: An Introduction -K. Seeger, Springer-Verlag, Berlin, 9th |
|                | edition, 2004.                                                                        |
|                | (iv)Physics of semiconductor devices – M. Shur, Prentice/Hall International, 1990     |
|                | (v) The Physics of Low-dimensional Semiconductors: An Introduction- J. M. Davies,     |
|                | Cambridge University Press, 1997                                                      |

| Course Code  | PH 576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:       | Nanoscale Quantum Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Credits:     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Туре         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lecture      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tutorial     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Practical    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Туре         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Description: | <ul> <li>Preliminary concepts: Fundamental length scales (De Broglie wavelength, Mean Free Path, Coherence Length, Thermal Diffusion Length) and classification of transport regimes, Resistance (in d-dimension) in the bulk and mesoscopic limits. Energy levels, wave functions, and DOS in quantum wells (both square and triangular), quantum wires, and quantum dots. (Optional: Coupling between quantum wells and superlattices); Revision of Bloch wavefunction and effective mass tensor. Band-structures of GaAs and Si, concept of valleys, longitudinal and transverse effective masses, the band-gap lattice parameter diagram, the concept of heterojunctions and different band alignments. Envelope function and effective mass approximation for heterostructures.</li> <li>Quantum nano/heterostructures in the real world: Quantization in (doped) heterojunction systems, the GaAs-AlGaAs heterojunction and the 2D electron gas (with comparison to fictitious quantum well discussed earlier). The double barrier structure and resonant tunneling diode. From 2DEG to quantum wires, quantum point contacts, quantum wires, and quantum dots in the real world (qualitative description of gated 2DEG based devices).</li> <li>Semi-classical transport and scattering mechanisms: Brief review of semiclassical transport (Boltzmann Transport Equation). Coulomb, Surface roughness, and Lattice scattering, Carrier mobilities in 2DEGs.</li> <li>Ballistic Transport: Landauer and Landauer-Buettiker formalisms: Current in resonant tunneling diodes (coherent and sequential tunneling), Landauer</li> </ul> |

|                  | formula introduction to the multi channel and concursional multi channel and    |
|------------------|---------------------------------------------------------------------------------|
|                  | formula, introduction to the multi-channel case, generalized multi-channel case |
|                  | and Landauer-Buettiker formalism, specific examples (2-probe, 3-probe, and 4-   |
|                  | probe cases).                                                                   |
|                  | Ballistic transport in quantum wires: Conductance quantization in QPCs,         |
|                  | Adiabatic transport model, Bias spectroscopy of QPCs.                           |
|                  | Low dimensional Quantum heterostructures in magnetic field: Quantum Hall        |
|                  | effects, QPC in magnetic field, 0.7 feature in QPCs.                            |
|                  | Quantum dots, Coulomb blockade, and Single Electron Transistors: Solving for    |
|                  | the (Fock-Darwin) eigenstates, Coulomb Blockade and fundamentals of single      |
|                  | electron tunneling, Orthodox theory of single electron tunneling (Transfer      |
|                  | Hamiltonian Formalism), Stability diagrams of double quantum dots (quantum      |
|                  | dot molecules).                                                                 |
| Text/References: | (i) Transport in Nanostructures - David K. Ferry, Stephen Goodnick, Jonathan    |
|                  | Bird, Cambridge University Press 2009)                                          |
|                  | (ii) Quantum Heterostructures: Microelectronics and Optoelectronics - Vladimir  |
|                  | V. Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, Cambridge University    |
|                  | Press 1999                                                                      |
|                  | (iii) Electronic Transport in Mesoscopic Systems - Supriyo Dutta, Cambridge     |
|                  | University Press 1995                                                           |
|                  | (iv) Quantum Transport - Introduction to Nanoscience, Y. V. Nazarov, Y. M.      |
|                  | Blanter, Cambridge University Press 2009                                        |
|                  | (v) The Physics of Low-dimensional Semiconductors: An Introduction - John M.    |
|                  | Davies, Cambridge University Press, 1997                                        |

| Course Code  | PH 578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title:       | Nanodevices and Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Credits:     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Туре         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lecture      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tutorial     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Practical    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Description: | <ol> <li>Nano sensors, nano-pressure, nanopiezeo sensors, plasmonic nanosensors,<br/>nano for gas sensors &amp; Nano actuators, with particular emphasis on<br/>biomaterial based devices, Field effect transistor based biosensors (bio-<br/>FETs)</li> <li>Novel batteries: Li, Na, and other materials based batteries</li> <li>Memory devices: DVD Roms, magnetic, solid state, memristors, and other<br/>modern proposals</li> <li>Nano and Microfluidic devices: To learn the basic behaviour of liquid in</li> </ol> |

|                  | micr       | o or nanosystems. Emphasize on interaction of fundamental                  |
|------------------|------------|----------------------------------------------------------------------------|
|                  | mecl       | nanism and desing of microfluidic devices. Application is Lab on a chip    |
|                  | state      | e of art. analyse it. Theory of micro and nanofluidics, equation of        |
|                  | chan       | ge, flow at microscale, diffusion and microscale mixing, circuit analysis, |
|                  | Stok       | es flow electrostatics and electrodynamics electrical double layer         |
|                  | 7012       | potential species and charge transport electro-osmosis and                 |
|                  |            | repheresis AC field in microsystem byrdedymanics                           |
|                  | elect      | rophoresis, AC neid in microsystem, nyrdodymanics,                         |
|                  | surra      | actant/suspension and separation, technological production of              |
|                  | com        | ponents, mixure, pumps, and fabrication of lab-on-chip                     |
|                  | 5) Quar    | ntum Computing Hardware: Quantum Information Processing - Q-bits:          |
|                  | Char       | ge bits and Spin bits - Quantum Computing devices, quantum                 |
|                  | comi       | munication devices. Josephson Junction based quantum computing:            |
|                  | char       | ge, flux, and phase qubits. Building large Quantum Computers,              |
|                  | Fabr       | ication, testing architectural challenges, Quantum dot cellular            |
|                  | auto       | mata (QCA) – computing with QCA                                            |
| Text/References: | Books on   | Nanosensors:                                                               |
|                  | (i)        | Introduction to Biosensors From Electric Circuits to immunosensors,        |
|                  |            | Yoon, Jeong-Yeol (Springer 2016).                                          |
|                  | (ii)       | (ii) Biosensors: A Practical Approach, A. E. G. Cass IRL Press at Oxford   |
|                  |            | University Press, 1990.                                                    |
|                  | (iii)      | Molecular Sensors and Nanodevices: Principles: Designs and                 |
|                  | ( )        | Applications in Biomedical Engineering: JXJ Zhang, K Hoshino,              |
|                  |            | Elsevier: 2014                                                             |
|                  | (iv)       | Nanofabrication Towards Biomedical Applications Challa Kumar               |
|                  | (11)       | Wiley-VCH 2016                                                             |
|                  | (v)        | MEMS and Nanotechnology-Based Sensors and Devices for                      |
|                  | (V)        | Communications A B Iba Medical and Acrospace Applications 1st              |
|                  |            | Edition CBC Bross 2010                                                     |
|                  | ()         | Edition CRC Press 2019,                                                    |
|                  | (VI)       | Nanotechnology and Biosensors, Dimitrios P Nikolelis, Georgia              |
|                  |            | Paraskevi Nikoleli (Elsevier 2018)                                         |
|                  | Books on   | Batteries:                                                                 |
|                  | (i)        | Introduction To Nanotechnology, Poole and Owens – John Wiley and           |
|                  |            | Sons 2003                                                                  |
|                  |            |                                                                            |
|                  | Nanomat    | erials for Electrochemical Energy Storage Devices; Poulomi Roy, S. K.      |
|                  | Srivastava | a- Wiley-Scrivener 2019                                                    |
|                  | /···       |                                                                            |
|                  | (11)       | Modern Battery Engineering: A Comprehensive Introduction by Kai            |

|          | Peter Birke, World Scientific; Illustrated edition (2019)                                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| (iii)    | Modern Batteries, 2nd Edition, by C. Vincent and Bruno Scrosati-                                                                                  |
|          | Paperback ISBN: 9780340662786 eBook ISBN: 9780080536699                                                                                           |
|          | Imprint: Butterworth-Heinemann 1997                                                                                                               |
|          |                                                                                                                                                   |
| BOOKS Or | Memory Devices:                                                                                                                                   |
| (1)      | Nationalerials-Based Charge Trapping Memory Devices by Ammar                                                                                      |
|          | Naylen, Nazek El-Atab (Elsevier 2020)                                                                                                             |
| (11)     | Phase Change Memory Device Physics, Reliability and Applications -                                                                                |
| (        | Editors: Pigozzo, Andrea (Ed.), Springer 2018                                                                                                     |
| (111)    | Advances in Non-volatile Memory and Storage Technology, 1st                                                                                       |
|          | Edition, Editor: Yoshio Nishi. Hardcover ISBN: 9780857098030, eBook                                                                               |
|          | ISBN: 9780857098092, Imprint: Woodhead Publishing 2014                                                                                            |
| (iv)     | Advances in Memristors, Memristive Devices and Systems,                                                                                           |
|          | Vaidyanathan, Sundarapandian, Volos, Christos (Eds.), Springer 2017                                                                               |
| Books or | MicroEluidics:                                                                                                                                    |
| (i)      | Micro- and Nanoscale Fluid Mechanics for Engineers: Transport in                                                                                  |
|          | Microfluidic Devices By Brian J. Kirby. 2009.                                                                                                     |
|          | http://kirbyresearch.com/textbook                                                                                                                 |
| (ii)     | Probstein, R.F. Physicochemical Hydrodynamics, 2nd Ed., Wiley, 1994                                                                               |
| (iii)    | Tabeling, P. Introduction to Microfluidics, Oxford, 2005.                                                                                         |
| (iv)     | Bruss, H. Theoretical Microfluidics, Oxford, 2008.                                                                                                |
| (v)      | Nguyen, N-T and Wereley, S "Fundamentals and Applications of                                                                                      |
|          | Microfluidics", 2nd Edition, Artech House, ISBN: 1580539726                                                                                       |
| (vi)     | Berthier J. and Silberzan, P. Microfluidics for Biotechnology. Artech                                                                             |
|          | HousePublishers. ISBN: 1-58053-961-0. (2010)                                                                                                      |
| Books or | Quantum Computing:                                                                                                                                |
| (1)      | Quantum Computation and Quantum Information 10th Anniversary                                                                                      |
|          | Edition Hardcover – 9 December 2010 by Michael A. Nielsen and Isaac                                                                               |
|          | L. Chuang.                                                                                                                                        |
| (ii)     | Quantum Computer Systems: Research for Noisy Intermediate-Scale                                                                                   |
|          | Quantum Computers, Synthesis Lectures on Computer Architecture                                                                                    |
|          | (2020) by Yongshan Ding and Fred Chong, published by Morgan                                                                                       |
|          | Ciaypool, DOI: 10.2200/S01014ED1V01Y202005CAC051                                                                                                  |
|          | (iii)<br>Books or<br>(i)<br>(ii)<br>(ii)<br>(iv)<br>Books or<br>(i)<br>(ii)<br>(iv)<br>(v)<br>(v)<br>(v)<br>(v)<br>(v)<br>(vi)<br>Books or<br>(i) |

| Course Code | PH 580                          |
|-------------|---------------------------------|
| Title:      | Magnetism and Superconductivity |
| Credits:    | 6                               |

| Туре             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Tutorial         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Practical        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Description:     | Magnetism: Classification of magnetic materials; localized and itinerant<br>magnetism; various types of exchange interactions- direct, super, RKKY and DM;<br>magneto-crystalline anisotropy energy; shape anisotropy; domains, domain walls<br>and magnetization process; magnetism in thin films and fine particles; basics of<br>spin dependent scattering/spin-polarized transport; magneto-transport effects<br>such as CMR, AMR, GMR, TMR; basics of magnetic recording, Hall effect,<br>essentials of spintronics and spintronic devices; basic ideas of de Haas- van<br>Alphen effect and quantum Hall effect.<br>Superconductivity: Overview; types of superconductors; electrodynamics and<br>thermodynamics of superconductors; Elements of Ginzburg-Landau theory and<br>BCS theory; Fluxoid quantisation; Giaever tunnelling; Josephson tunnelling;<br>principle of quantum interference; applications of superconductivity; SQUID,<br>recent discoveries on high temperature superconductors. |
| Text/References: | <ol> <li>Magnetism in Condensed Matter - Stephen Blundell, Oxford Master<br/>Series 2001</li> <li>Magnetism and Magnetic Materials – J M D Coey, Cambridge University<br/>Press 2012</li> <li>Physics of Ferromagnetism - S. Chikazumi, Oxford University Press 1997</li> <li>Introduction to Spintronics - S. Bandyopadhya and M. Cahay, CRC press<br/>2020</li> <li>Introduction to Solid State Physics - C Kiitel, , 7<sup>th</sup> ed, John Wiley 2005</li> <li>Superconductivity, Superfluids and Condensates - J F Annet, Oxford<br/>Master Series 2004</li> <li>Superconductivity - C Poole, H Farach and R Creswick, R Prozorov ,<br/>Elsevier 2014</li> </ol>                                                                                                                                                                                                                                                                                                                                      |

| Course Code  | PH 601 (needs PH 534 as the pre-requisite)                                   |
|--------------|------------------------------------------------------------------------------|
| Title:       | Advanced Quantum Information and Computation                                 |
| Credits:     | 6                                                                            |
| Туре         | Т                                                                            |
| Lecture      | 2                                                                            |
| Tutorial     | 1                                                                            |
| Practical    | 0                                                                            |
| Description: | Module 1: Computational Complexity & Models of Quantum Computing (20%        |
|              | lectures) Classical and quantum complexity: P, NP, NP-Complete and PSPACE in |

|                  | comparison to BQP. Grover does not change complexity. Models such as                                                                    |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                  | measurement based QC, topological QC. Module 2: Communication and                                                                       |
|                  | Cryptography (30% lectures) classical Shannon theory, noisy quantum states,                                                             |
|                  | channel and source coding, channel capacity, connection to error correction, BB-                                                        |
|                  | 84 and Eckert, post quantum cryptography. Module 3: Error Correction (20%                                                               |
|                  | lectures) Error Correction: Classical error correction, bit and phase flip errors,                                                      |
|                  | Steane and shor code, stabilizers and graph states, Gottesman-Knill Theorem                                                             |
|                  | and implications. Module 4: Physical Systems and Simulations (30% lectures)                                                             |
|                  | One or few physical implementations (such as circuit-based QC, adiabatic QC, ion                                                        |
|                  | traps, linear optics, superconducting qubits.). Schmidt rank, MPS and classical                                                         |
|                  | simulation of quantum states, quantum simulations.                                                                                      |
| Text/References: | [1] Nielsen, Michael A., and Isaac L. Chuang. "Quantum Computation and                                                                  |
|                  | Quantum Information (Cambridge University Press, Cambridge,                                                                             |
|                  | 2000)."302240URL https://doi. org/10.1017/CBO9780511976667.                                                                             |
|                  | [2] Nakahara, Mikio.302240Quantum computing: from linear algebra to physical                                                            |
|                  | realizations. CRC press, 2008.                                                                                                          |
|                  | [3] Preskill, John. "Lecture notes for physics 229: Quantum information and                                                             |
|                  | computation."302240California Institute of Technology30224016, no. 1 (1998):                                                            |
|                  | 1-8.                                                                                                                                    |
|                  | [4] Wilde, Mark M.302240Quantum information theory. Cambridge University                                                                |
|                  | FTESS, 2013.<br>[5] Havashi Masahita Satashi Ishizaka Akinari Kawashi Gon Kimura and                                                    |
|                  | [5] Hayasiii, Masaiiito, Satosiii Isiiizaka, Akiioii Kawaciii, Gen Kiiiura, alu                                                         |
|                  | 2014                                                                                                                                    |
|                  | [6] Prover Heinz Deter and Francesce Detructions 2022/07he theory of open                                                               |
|                  | [0] Bleder, Heinz-Peter, and Francesco Petraccione.30224011e theory of open<br>quantum systems. Oxford University Press on Domand. 2002 |
|                  | [7] Pongteson Ingomar, and Karol Życzkowski 202240Coometry of quantum                                                                   |
|                  | [7] Bengisson, ingeniar, and karol zyczkowski.sozz40Geometry of quantum                                                                 |
|                  | states, an introduction to quantum entanglement. Cambridge university press,                                                            |
|                  | 2017.<br>[8] Wolf Michael M. "Quantum channels & anarational Cuidad                                                                     |
|                  | tour "202240 octure notes available at http://www.mE.ma.tum                                                                             |
|                  | do (focuili / nub M202240E (2)                                                                                                          |
|                  | ן מפיוטאיוגויףעט ואוסטצצאטס (צ).                                                                                                        |

| Course Name  | Relativistic Cosmology                                                                                                                                                                                                     |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Code: | PH 818                                                                                                                                                                                                                     |
| Credits:     | 6                                                                                                                                                                                                                          |
| Туре         | Т                                                                                                                                                                                                                          |
| Lecture      | 2                                                                                                                                                                                                                          |
| Tutorial     | 1                                                                                                                                                                                                                          |
| Practical    | 0                                                                                                                                                                                                                          |
| Description: | Expansion of the Universe, Friedman-Robertson-Walker-Lemaitre model,<br>Geodesics and Distance, geodesic deviation, Standard candles, and Standard<br>Rulers. Standard cosmological model: radiation dominated era, matter |

|                  | domination, dark energy, and accelerated expansion. Horizon problem, flatness<br>problem. Inflationary paradigm. Thermal history of the universe, primordial<br>nucleosynthesis, decoupling of neutrinos, weakly interacting massive particles,<br>electron-positron annihilation, matter radiation decoupling, last scattering<br>surface, cosmic microwave background radiation. Scalar fields in an expanding<br>universe. Generation of perturbations in inflation, Tensor, and Scalar<br>perturbations, Reheating Non-linear collapse, Press-Schechter formalism, Matter<br>power spectra observations, galaxy correlation functions and bias, Lyman alpha,<br>21 cm observations, weak lensing, x-ray surveys, Baryon Acoustic oscillations<br>Fluctuations in the cosmic microwave background radiation. Transfer Functions,<br>Polarization power spectra, E-modes and B-modes. Sachs-Wolfe and Integrated<br>Sachs Wolfe effect, Silk damping, The observed fluctuations in the cosmic<br>microwave background radiation and its relation with Cosmological Parameters,<br>Observational constraints. Perturbations in an expanding universe. Relativistic<br>perturbation theory, growth of perturbations in different scenarios. Fluctuations<br>in the cosmic microwave background radiation. Transfer Functions,<br>Baryon<br>Acoustic oscillations Late time perturbations and measurements of the Hubble<br>parameter - Type Ia supernovae, Baryon acoustic oscillations, Strong lensing, |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Gravitational wave measurements. Geometric effects, redshift space distortions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Text/References: | 1.S. Weinberg, Cosmology, Oxford University Press, 2008 2. Ruth Durrer, The cosmic microwave background, Cambridge University Press, 2008. 3.T. Padmanabhan, Theoretical Astrophysics, Vol.III: Galaxies and Cosmology, Cambridge University Press, 2002. 4. Scott Dodelson, Modern Cosmolog, Reed Elsevier (2020).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |